Two algorithmic results for the traveling salesman problem

被引:57
|
作者
Barvinok, AI
机构
[1] Department of Mathematics, University of Michigan, Ann Arbor
关键词
Hamiltonian circuit; traveling salesman problem; combinatorial optimization;
D O I
10.1287/moor.21.1.65
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For any norm in a Euclidean space and for any number delta > 0 we present a polynomial time algorithm which computes a Hamiltonian circuit with the given vertices in the space whose length approximates, with relative error less than delta, the largest length of a Hamiltonian circuit with these vertices. We also present an algorithm which for a given graph with n vertices computes the number of Hamiltonian circuits in this graph with 2(n+O(log n)) time complexity and a polynomial in n space complexity. As a by-product of our approach we prove that the permanent of a matrix can be computed in polynomial time provided the rank of the matrix is fixed.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 50 条
  • [1] FURTHER RESULTS ON THE PROBABILISTIC TRAVELING SALESMAN PROBLEM
    BERTSIMAS, D
    HOWELL, LH
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 65 (01) : 68 - 95
  • [2] A NEW GENERALIZATION OF THE TRAVELING SALESMAN PROBLEM
    Alkaya, Ali Fuat
    Duman, Ekrem
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2010, 9 (02) : 162 - 175
  • [3] A quadratic version of the traveling salesman problem
    Fruchard, Augustin
    Juillet, Nicolas
    Schafke, Reinhard
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2024, 67 (02): : 203 - 222
  • [4] The indefinite period traveling salesman problem
    Sun, Lei
    Karwan, Mark H.
    Diaby, Moustapha
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (03) : 1171 - 1181
  • [5] Another approach for the traveling salesman problem
    Longani, V
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (2-3) : 249 - 253
  • [6] PARALLEL TEMPERING FOR THE TRAVELING SALESMAN PROBLEM
    Wang, Chiaming
    Hyman, Jeffrey D.
    Percus, Allon
    Caflisch, Russel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (04): : 539 - 556
  • [7] Solving the family traveling salesman problem
    Bernardino, Raquel
    Paias, Ana
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 267 (02) : 453 - 466
  • [8] Animation of the Traveling Salesman Problem
    ElAarag, Hala
    Romano, Sam
    2012 PROCEEDINGS OF IEEE SOUTHEASTCON, 2012,
  • [9] An algorithmic framework for improving heuristic solutions - Part II. A new version of the stochastic traveling salesman problem
    Choi, J
    Lee, JH
    Realff, MJ
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1297 - 1307
  • [10] Traveling Salesman Problem with Clustering
    Schneider, Johannes J.
    Bukur, Thomas
    Krause, Antje
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (05) : 767 - 784