Is wood ash amendment a suitable mitigation strategy for N2O emissions from soil?

被引:10
|
作者
Borno, Marie Louise [1 ,3 ]
Ronn, Regin [2 ]
Ekelund, Flemming [2 ]
机构
[1] Univ Copenhagen, Dept Plant & Environm Sci, Hojbakkegard Alle 13, DK-2630 Tastrup, Denmark
[2] Univ Copenhagen, Dept Biol, Univ Pk 15, DK-2100 Copenhagen O, Denmark
[3] Univ Chinese Acad Sci, Sino Danish Ctr Educ & Res SDC, 380 Huaibeizhuang, Beijing, Peoples R China
关键词
Random forests; Modelling; pH management; Soil amendment; Denitrification; Nitrification; NITROUS-OXIDE EMISSIONS; NITRIFIER DENITRIFICATION; FOREST SOIL; PH; NITRIFICATION; REDUCTION; FLUXES; N-2; FERTILIZATION; TRANSCRIPTION;
D O I
10.1016/j.scitotenv.2020.136581
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wood ash, the by-product of biomass combustion to energy, can return important nutrients back to the soil and counteract acidification. However, the application of wood ash may affect the emission of greenhouse gases. Here, the effect of wood ash application on nitrous oxide (N2O) emissions from different soil environments were investigated in a 40 days incubation experiment comprising ten different soil types amended with five different wood ash concentrations (0, 3, 9, 20. and 54 t ash ha(-1)). The emitted N2O was measured continuously, and initial soil properties without ash application (carbon (C), nitrogen (N), ammonium (NH4+), nitrate (NO3-), and pH) and resulting soil properties (pH, NH4+, and NO3-) were measured prior and after the incubation period, respectively. The Random Forests (RF) model was used to identify which factors (initial and resulting soil properties, vegetation, management, wood ash doze, and respiration rate) were the most important to predict the development of emitted N2O after ash application. Wood ash either increased, decreased, or had no effect on the amount of emitted N2O depending on soil type and ash dose. The RF model identified the final resulting pH as the most important factor for the prediction of emitted N2O. The results suggest that wood ashcan mitigate N2O emissions from soil, however, this effect depends on soil type where a mitigating effect of wood ash application was observed mainly in low pH soils with high soil organic matter whereas an increase in N2O emissions was observed in mineral soils that had previously received N fertilization.This study emphasises the importance of pH manipulation in regards to N2O emissions from soil. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Soil fauna diversity increases CO2 but suppresses N2O emissions from soil
    Lubbers, Ingrid M.
    Berg, Matty P.
    De Deyn, Gerlinde B.
    van der Putten, Wim H.
    van Groenigen, Jan Willem
    GLOBAL CHANGE BIOLOGY, 2020, 26 (03) : 1886 - 1898
  • [42] Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil
    S Franz Bender
    Faline Plantenga
    Albrecht Neftel
    Markus Jocher
    Hans-Rudolf Oberholzer
    Luise Köhl
    Madeline Giles
    Tim J Daniell
    Marcel GA van der Heijden
    The ISME Journal, 2014, 8 : 1336 - 1345
  • [43] N2O emissions from global transportation
    Wallington, T. J.
    Wiesen, P.
    ATMOSPHERIC ENVIRONMENT, 2014, 94 : 258 - 263
  • [44] Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil
    Bender, S. Franz
    Plantenga, Faline
    Neftel, Albrecht
    Jocher, Markus
    Oberholzer, Hans-Rudolf
    Koehl, Luise
    Giles, Madeline
    Daniell, Tim J.
    van der Heijden, Marcel G. A.
    ISME JOURNAL, 2014, 8 (06): : 1336 - 1345
  • [45] N2O emissions from a cultivated mineral soil under different soil drainage conditions
    Tesfai, Mehreteab
    Hauge, Atle
    Hansen, Sissel
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2015, 65 : 128 - 138
  • [46] Maize-Brachiaria intercropping: A strategy to supply recycled N to maize and reduce soil N2O emissions?
    Canisares, Lucas Pecci
    Rosolem, Ciro Antonio
    Momesso, Letusa
    Costa Crusciol, Carlos Alexandre
    Villegas, Daniel Mauricio
    Arango, Jacobo
    Ritz, Karl
    Cantarella, Heitor
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2021, 319
  • [47] Evidences of N2O Emissions in Chloropicrin-Fumigated Soil
    Fang, Wensheng
    Yan, Dongdong
    Wang, Xianli
    Huang, Bin
    Song, Zhaoxin
    Liu, Jie
    Liu, Xiaoman
    Wang, Quxia
    Li, Yuan
    Ouyang, Canbin
    Cao, Aocheng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (44) : 11580 - 11591
  • [48] Soil N2O emissions during dry fallow periods
    Cardinael, Remi
    Barton, Louise
    Corbeels, Marc
    Six, Johan
    Rowlings, David
    Shumba, Armwell
    Chikowo, Regis
    Farrell, Mark
    GLOBAL CHANGE BIOLOGY, 2024, 30 (07)
  • [49] Effects of soil solution on the dynamics of N2O emissions:: a review
    Heincke, M
    Kaupenjohann, M
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1999, 55 (02) : 133 - 157
  • [50] Effects of soil solution on the dynamics of N2O emissions: a review
    Maren Heincke
    Martin Kaupenjohann
    Nutrient Cycling in Agroecosystems, 1999, 55 : 133 - 157