Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: effects of the templates on the assemblies

被引:50
|
作者
Li, Hejun [1 ]
Xu, Zhanwei [1 ]
Li, Kezhi [1 ]
Hou, Xianghui [2 ]
Cao, Gaoxiang [1 ]
Zhang, Qinglin [1 ]
Cao, Zeyuan [1 ]
机构
[1] NW Polytech Univ, CC Composites Res Ctr, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Univ Nottingham, Dept Mech Mat & Mfg Engn, Nottingham NG7 2RD, England
基金
中国国家自然科学基金;
关键词
COPPER PHTHALOCYANINE; ASCORBIC-ACID; THIN-FILMS; ELECTROCHEMICAL PROPERTIES; ELECTRON-TRANSFER; OXYGEN REDUCTION; IN-SITU; ELECTROCATALYSIS; TRANSPORT; OXIDATION;
D O I
10.1039/c0jm02156c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt phthalocyanine (CoPc) assemblies are prepared using several kinds of multiwalled carbon nanotube (MWCNT) templates by in situ solid synthesis in a muffle furnace. The products are characterized by infrared spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and differential thermal analysis-thermogravimetry. The electrocatalytic activity of the obtained MWCNT-templated CoPc assemblies is measured by cyclic voltammograms in an oxygen-saturated 0.5 M H(2)SO(4). The results show that the CoPc assemblies have several different structures: CoPc nanothreads supported by MWCNTs, nanocrystals mixed with MWCNTs and CoPc/MWCNT coaxial nanotubes. The size and the structure of CoPc assemblies are controlled by the interfacial interaction, including p-p interaction, hydrogen bond and coordinate bond, between CoPc and the MWCNTs, which strongly depend on the microstructure of the MWCNTs. Thermal analysis shows CoPc/MWCNT coaxial nanotubes exhibit higher thermal stability than the assemblies with the structure of CoPc nanothreads supported by MWCNTs and nanocrystals linked to MWCNTs. In addition, the cyclic voltammogram measurements show they display different electrochemical characteristics depending on their structures. CoPc/MWCNT assemblies with coaxial nanotube structure have better electrocatalytic activity to oxygen reduction than the others.
引用
收藏
页码:1181 / 1186
页数:6
相关论文
共 50 条
  • [21] Dispersion and Shortening of Multi-Walled Carbon Nanotubes by Size Modification
    Jang, Byung-Koog
    Sakka, Yoshio
    MATERIALS TRANSACTIONS, 2010, 51 (01) : 192 - 195
  • [22] In situ characterization by cyclic voltammetry and conductance of composites based on polypyrrole, multi-walled carbon nanotubes and cobalt phthalocyanine
    Gabriela Porras-Gutierrez, Ana
    Frontana-Uribe, Bernardo A.
    Gutierrez-Granados, Silvia
    Griveau, Sophie
    Bedioui, Fethi
    ELECTROCHIMICA ACTA, 2013, 89 : 840 - 847
  • [23] Etching effects of ethanol on multi-walled carbon nanotubes
    Yu, GJ
    Gong, JL
    Wang, S
    Zhu, DZ
    He, SX
    Zhu, ZY
    CARBON, 2006, 44 (07) : 1218 - 1224
  • [24] Modification effects of multi-walled carbon nanotubes on the mechanical and rheological properties of epoxy asphalt
    Yu, Huanan
    Jiang, Hang
    Qian, Guoping
    Zhu, Xuan
    Yao, Ding
    Zhang, Chao
    Li, Jie
    Zhong, Huiping
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 369
  • [25] Biological effects of agglomerated multi-walled carbon nanotubes
    Song, Zheng-Mei
    Wang, Lin
    Chen, Ni
    Cao, Aoneng
    Liu, Yuanfang
    Wang, Haifang
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 142 : 65 - 73
  • [26] Diameter Effects on Cytotoxicity of Multi-Walled Carbon Nanotubes
    Wang, X.
    Jia, G.
    Wang, H.
    Nie, H.
    Yan, L.
    Deng, X. Y.
    Wang, S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (05) : 3025 - 3033
  • [27] Structure and magnetic properties of multi-walled carbon nanotubes modified with cobalt
    Ritter, U.
    Scharff, P.
    Grechnev, G. E.
    Desnenko, V. A.
    Fedorchenko, A. V.
    Panfilov, A. S.
    Prylutskyy, Yu. I.
    Kolesnichenko, Yu. A.
    CARBON, 2011, 49 (13) : 4443 - 4448
  • [28] Preparation and Characterization of Oxidized Multi-Walled Carbon Nanotubes and Glycine Functionalized Multi-Walled Carbon Nanotubes
    Deborah, M.
    Jawahar, A.
    Mathavan, T.
    Dhas, M. Kumara
    Benial, A. Milton Franklin
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2015, 23 (07) : 583 - 590
  • [29] Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility
    He, Yi
    Xu, Zhonghao
    Yang, Qiangbin
    Wu, Feng
    Liang, Lv
    JOURNAL OF NANOPARTICLE RESEARCH, 2015, 17 (01)
  • [30] Radiation modification of polyvinyl chloride nanocomposites with multi-walled carbon nanotubes
    Ritter, U.
    Scharff, P.
    Pinchuk, T. M.
    Dmytrenko, O. P.
    Bulavin, L. A.
    Kulish, M. P.
    Prylutskyy, Y. I.
    Zabolotnyy, M. A.
    Grabovsky, Y. E.
    Bilyy, M. M.
    Rugal, A. G.
    Shut, A. M.
    Shlapatska, V. V.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2010, 41 (08) : 675 - 681