Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces

被引:50
作者
Genz, A [1 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
关键词
multiple integrals; sphere; surface integral;
D O I
10.1016/S0377-0427(03)00413-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over U-n, the surface of an n-dimensional hyper-sphere. Explicit formulas for the weights are given for odd degrees 3-13. The new rules are efficient and only moderately unstable. Two randomization methods are described. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 9 条
[1]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[2]   Stochastic methods for multiple integrals over unbounded regions [J].
Genz, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) :287-298
[3]   STOCHASTIC QUADRATURE FORMULAS [J].
HABER, S .
MATHEMATICS OF COMPUTATION, 1969, 23 (108) :751-&
[4]   FULLY SYMMETRIC INTEGRATION FORMULAS FOR THE SURFACE OF THE SPHERE IN S-DIMENSIONS [J].
KEAST, P ;
DIAZ, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :406-419
[5]  
Mysovskih I.P., 1981, INTERPOLATORY CUBATU
[7]  
Stroud AH., 1971, Approximate Calculation of Multiple Integrals
[8]  
SYLVESTER P, 1970, MATH COMPUT, V24, P95
[9]  
Xu Y., 1998, SIAM J MATH ANAL, V5, P169, DOI [DOI 10.4310/MAA.1998.V5.N2.A5, 10.4310/MAA.1998.v5.n2.a5]