High-Order Conformal Perfectly Matched Layer for the DGTD Method

被引:5
作者
Wang, Shuqi [1 ]
Wei, Xuan [1 ]
Zhou, Yuanguo [1 ]
Ren, Qiang [2 ]
Jia, Yunfeng [2 ]
Liu, Qing Huo [3 ]
机构
[1] Xian Univ Sci & Technol, Coll Commun & Informat Engn, Xian 710054, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
基金
中国国家自然科学基金;
关键词
Conductivity; Mathematical model; Time-domain analysis; Ellipsoids; Method of moments; Maxwell equations; Finite element analysis; Conformal perfectly matched layer (PML); discontinuous Galerkin time-domain (DGTD) method; hierarchical basis functions; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; ANALYTICAL DERIVATION; MAXWELLS EQUATIONS; HARMONIC-ANALYSIS; ABSORBER; PML; ALGORITHM;
D O I
10.1109/TAP.2021.3084625
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on the discontinuous Galerkin time-domain (DGTD) method, a new conformal perfectly matched layer (PML) is introduced to truncate the 3-D open domain. Compared with the traditional (rectangular or cubic) PML, the conformal PML is a smooth convex shell, which significantly reduces the buffer space in the computational domain. In this article, we construct the conformal PML in an orthogonal curvilinear coordinate system. Conductivities are defined to absorb the outgoing waves, depending on the distance from the sampling point to the non-PML region and the principal curvature radii of the sampling point, which are calculated utilizing the Weingarten transformation. The analytical expression of 3-D conformal PML is derived with the complex coordinate stretching technique. Furthermore, to reduce the total degrees of freedom (DoFs) while maintaining accuracy, the hierarchical vector basis functions are chosen to discretize the conformal PML and physical region. Numerical results validate its good absorption performance.
引用
收藏
页码:7753 / 7760
页数:8
相关论文
共 33 条
[1]   3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials [J].
Alvarez, J. ;
Angulo, Luis D. ;
Bretones, A. Rubio ;
Garcia, Salvador G. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 :1182-1185
[2]   An Analysis of the Leap-Frog Discontinuous Galerkin Method for Maxwell's Equations [J].
Alvarez, Jesus ;
Angulo, Luis D. ;
Cabello, Miguel R. ;
Rubio Bretones, A. ;
Garcia, Salvador G. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (02) :197-207
[3]   PML Implementation in a Nonconforming Mixed-Element DGTD Method for Periodic Structure Analysis [J].
Bao, Huaguang ;
Kang, Lei ;
Campbell, Sawyer D. ;
Werner, Douglas H. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) :6979-6988
[4]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[5]   Discontinuous Galerkin Time-Domain Methods for Multiscale Electromagnetic Simulations: A Review [J].
Chen, Jiefu ;
Liu, Qing Huo .
PROCEEDINGS OF THE IEEE, 2013, 101 (02) :242-254
[6]   A 3D PERFECTLY MATCHED MEDIUM FROM MODIFIED MAXWELLS EQUATIONS WITH STRETCHED COORDINATES [J].
CHEW, WC ;
WEEDON, WH .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (13) :599-604
[7]   Conformal perfectly matched layer for the mixed finite element time-domain method [J].
Donderici, Burkay ;
Teixeira, Fernando L. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (04) :1017-1026
[8]   Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Dependent First Order Maxwell's Equations [J].
Dosopoulos, Stylianos ;
Lee, Jin-Fa .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (12) :4085-4090
[9]   A Strongly Well-Posed PML in Lossy Media [J].
Fan, Guo-Xin ;
Liu, Qing Huo .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2003, 2 :97-100
[10]   Spherical perfectly matched absorber for finite-volume 3-D domain truncation [J].
Fumeaux, Christophe ;
Sankaran, Krishnaswamy ;
Vahldieck, Ruediger .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (12) :2773-2781