Performance analysis of proton exchange membrane fuel cell in automotive applications

被引:29
|
作者
Pahon, E. [1 ]
Bouquain, D. [2 ]
Hissel, D. [2 ]
Rouet, A. [3 ]
Vacquier, C. [3 ]
机构
[1] Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST Inst,FCLAB, Belfort, France
[2] Univ Bourgogne Franche Comte, FCLAB, CNRS, FEMTO ST Inst, Belfort, France
[3] SYMBIO, Venissieux, France
关键词
Proton exchange membrane fuel cell; Start; stop cycling; Durability; Performance analysis; Degradation mechanisms; Oxygen reduction reaction; SHUT-DOWN STRATEGY; CARBON CORROSION; VEHICLES; CYCLES;
D O I
10.1016/j.jpowsour.2021.230385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper deals with the performance analysis of a proton exchange membrane fuel cell in automotive applications and especially for start/stop phases. Start-Stop cycles are one of the main sources of degradation for fuel cell systems, embedded in the automotive applications, among other dynamic conditions as idling, load cycling or high power. In this study, polarization curves and electrochemical impedance spectra are used to analyze the degradation mechanisms inside fuel cell stack during start/stop cycling. Obviously, the carbon support of the catalyst layer is the main constituent that suffers performance degradation during the 2,600 successive cycles performed. The impedance measurement of a 5 kW PEM fuel cell stack revealed that the ohmic resistance does not vary whereas the charger transfer and mass transfer resistances increase drastically depending on the number of cycle repetitions. The oxygen reduction reaction impact due to the fuel/air interface is also visible even if the reactants are consumed with a dummy load for the shutdowns.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] An experimental study on the performance of proton exchange membrane fuel cell
    Kellegoz, M.
    Ozkan, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (3-4): : 399 - 406
  • [22] The effects of pinholes on proton exchange membrane fuel cell performance
    Lue, Weizhong
    Liu, Zhixiang
    Wang, Cheng
    Mao, Zongqiang
    Zhang, Milin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (01) : 24 - 30
  • [23] Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
    Xie, Meng
    Chu, Tiankuo
    Wang, Tiantian
    Wan, Kechuang
    Yang, Daijun
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    MEMBRANES, 2021, 11 (11)
  • [24] Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments
    Yu, Wei-Lung
    Wu, Sheng-Ju
    Shiah, Sheau-Wen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) : 2311 - 2322
  • [25] The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application
    Wang Cheng
    Wang Shubo
    Zhang Jianbo
    Li Jianqiu
    Wang Jianlong
    OuYang Minggao
    PROGRESS IN CHEMISTRY, 2015, 27 (04) : 424 - 435
  • [26] Proton Exchange Membrane Fuel Cell Reversal: A Review
    Qin, Congwei
    Wang, Jue
    Yang, Daijun
    Li, Bing
    Zhang, Cunman
    CATALYSTS, 2016, 6 (12):
  • [27] Materials for electrocatalysts in proton exchange membrane fuel cell: A brief review
    Alabi, A. S.
    Popoola, A. P. I.
    Popoola, O. M.
    Mathe, N. R.
    Abdulwahab, M.
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [28] Comparison of self cold start strategies of automotive Proton Exchange Membrane Fuel Cell
    Amamou, A.
    Boulon, L.
    Kelouwani, S.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 904 - 908
  • [29] Analysis of performance degradation in the dead-ended anode proton exchange membrane fuel cell under different load profiles
    Taghiabadi, Mohammad Mohammadi
    FUEL, 2024, 357
  • [30] ANALYSIS OF PROTON-EXCHANGE MEMBRANE FUEL-CELL PERFORMANCE WITH ALTERNATE MEMBRANES
    WAKIZOE, M
    VELEV, OA
    SRINIVASAN, S
    ELECTROCHIMICA ACTA, 1995, 40 (03) : 335 - 344