High-Temperature Skin Softening Materials Overcoming the Trade-Off between Thermal Conductivity and Thermal Contact Resistance

被引:20
|
作者
Kim, Taehun [1 ]
Kim, Seongkyun [1 ]
Kim, Eungchul [1 ]
Kim, Taesung [1 ,2 ]
Cho, Jungwan [1 ]
Song, Changsik [3 ]
Baik, Seunghyun [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
elastic modulus; skin softening materials; thermal conductivity; thermal contact resistance; trade-off; GRAPHITE NANOPLATELET; INTERFACE MATERIALS; CARBON; TRANSPORT; NITRIDE; PERFORMANCE; COMPOSITES; GRAPHENE;
D O I
10.1002/smll.202102128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The trade-off between thermal conductivity (kappa) and thermal contact resistance (R-c) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm(-2)K(-1)) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The kappa (82.8 W m(-1)K(-1)) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m(-1)K(-1)) of the EP core (386 mu m). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing R-c from 108.41 to 78.73 mm(2) K W-1. The thermoplastic skin is further softened at an elevated temperature (100 degrees C), dramatically decreasing E (0.19 GPa) and R-c (0.17 mm(2) K W-1) with little change in kappa, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Characterization of a High-Temperature Thermal Conductivity Reference Material
    Wu, J.
    Morrell, R.
    Allen, C.
    Mildeova, P.
    Turzo-Andras, E.
    Hammerschmidt, U.
    Rafeld, E.
    Blahut, A.
    Hameury, J.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (05)
  • [32] Characterization of a High-Temperature Thermal Conductivity Reference Material
    J. Wu
    R. Morrell
    C. Allen
    P. Mildeova
    E. Turzó-András
    U. Hammerschmidt
    E. Rafeld
    A. Blahut
    J. Hameury
    International Journal of Thermophysics, 2017, 38
  • [33] High-temperature thermal conductivity of ferroelectric and antiferroelectric perovskites
    Tachibana, Makoto
    Bourges, Cedric
    Mori, Takao
    APPLIED PHYSICS EXPRESS, 2022, 15 (12)
  • [34] Temperature dependences of thermal conductivity of solid heterogeneous crystalline and amorphous materials: An empirical approach to the description in the high-temperature region
    Horbatenko, Yu. V.
    Sagan, V. V.
    Korolyuk, O. A.
    Romantsova, O. O.
    Krivchikov, A. I.
    LOW TEMPERATURE PHYSICS, 2024, 50 (05) : 379 - 388
  • [35] Preparation and performance of hollow ceramic microsphere composites with high-temperature resistance, low thermal conductivity and toughness
    Liu H.
    Huang Y.
    Jin M.
    Tang S.
    He J.
    Wang C.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (05): : 2378 - 2386
  • [36] Thermal Conductivity Gas Sensors for High-Temperature Applications
    Samotaev, Nikolay
    Podlepetsky, Boris
    Mashinin, Mikhail
    Ivanov, Igor
    Obraztsov, Ivan
    Oblov, Konstantin
    Dzhumaev, Pavel
    MICROMACHINES, 2024, 15 (01)
  • [37] GRAIN SIZE EFFECTS ON EFFECTIVE THERMAL CONDUCTIVITY OF POROUS MATERIALS WITH INTERNAL THERMAL CONTACT RESISTANCE
    Wang, Moran
    Wang, Xinmiao
    Wang, Jinku
    Pan, Ning
    JOURNAL OF POROUS MEDIA, 2013, 16 (11) : 1043 - 1048
  • [38] Effects of repeated high-temperature cycles on the thermal contact resistance of bimetallic finned tubes
    Piir A.É.
    Roshchin S.P.
    Vereshchagin A.Yu.
    Kuntysh V.B.
    Minnigaleev A.Sh.
    Chemical and Petroleum Engineering, 2007, 43 (9-10) : 519 - 522
  • [39] High-temperature thermal conductivity of silicon in the solid and liquid states
    Magomedov, Ya. B.
    Gadjiev, G. G.
    HIGH TEMPERATURE, 2008, 46 (03) : 422 - 424
  • [40] An Apparatus for Measuring the High-Temperature Thermal Conductivity of Semiconductors and Their Melts
    Ya. B. Magomedov
    G. G. Gadzhiev
    Instruments and Experimental Techniques, 2004, 47 : 551 - 554