Discrete Optimizations using Graph Convolutional Networks

被引:0
|
作者
Balan, Radu [1 ]
Haghani, Naveed [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20740 USA
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
D O I
10.1117/12.2529432
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we discuss the use of graph deep learning in solving quadratic assignment problems (QAP). The quadratic assignment problem is an NP hard optimization problem. We shall analyze an approach using Graph Convolutional Networks (GCN). We prove that a specially designed GCN produces the optimal solution for a broad class of assignment problems. By appropriate training, the class of problems correctly solved is thus enlarged. Numerical examples compare this method with other simpler methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Contrastive Graph Learning with Graph Convolutional Networks
    Nagendar, G.
    Sitaram, Ramachandrula
    DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 96 - 110
  • [32] Optimizing energy storage plant discrete system dynamics analysis with graph convolutional networks
    Lou, Yangbing
    Sun, Fengcheng
    Ni, Jun
    HELIYON, 2024, 10 (10)
  • [33] Component segmentation of engineering drawings using Graph Convolutional Networks
    Zhang, Wentai
    Joseph, Joe
    Yin, Yue
    Xie, Liuyue
    Furuhata, Tomotake
    Yamakawa, Soji
    Shimada, Kenji
    Kara, Levent Burak
    COMPUTERS IN INDUSTRY, 2023, 147
  • [34] Detection of rumor conversations in Twitter using graph convolutional networks
    Serveh Lotfi
    Mitra Mirzarezaee
    Mehdi Hosseinzadeh
    Vahid Seydi
    Applied Intelligence, 2021, 51 : 4774 - 4787
  • [35] Graph Convolutional Networks Using Node Addition and Edge Reweighting
    Lee, Wen-Yu
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 368 - 377
  • [36] Efficient Analysis of Transactional Data Using Graph Convolutional Networks
    Hall, Hamish
    Baiz, Pedro
    Nadler, Philip
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2021, 1525 : 210 - 225
  • [37] SUPREME: multiomics data integration using graph convolutional networks
    Kesimoglu, Ziynet Nesibe
    Bozdag, Serdar
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (02)
  • [38] Segmentation of Buildings in Aerial Photographs Using Graph Convolutional Networks
    A. A. Zakharov
    M. V. Zakharova
    A. L. Zhiznyakov
    Pattern Recognition and Image Analysis, 2024, 34 (4) : 1216 - 1222
  • [39] Collaborative Filtering on Bipartite Graphs using Graph Convolutional Networks
    Kim, Minkyu
    Kim, Jinho
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 304 - 307
  • [40] A unified framework on node classification using graph convolutional networks
    Mithe, Saurabh
    Potika, Katerina
    2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, : 67 - 74