Discrete Optimizations using Graph Convolutional Networks

被引:0
|
作者
Balan, Radu [1 ]
Haghani, Naveed [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20740 USA
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
D O I
10.1117/12.2529432
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we discuss the use of graph deep learning in solving quadratic assignment problems (QAP). The quadratic assignment problem is an NP hard optimization problem. We shall analyze an approach using Graph Convolutional Networks (GCN). We prove that a specially designed GCN produces the optimal solution for a broad class of assignment problems. By appropriate training, the class of problems correctly solved is thus enlarged. Numerical examples compare this method with other simpler methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Learning discrete adaptive receptive fields for graph convolutional networks
    Xiaojun MA
    Ziyao LI
    Guojie SONG
    Chuan SHI
    ScienceChina(InformationSciences), 2023, 66 (12) : 5 - 15
  • [2] Learning discrete adaptive receptive fields for graph convolutional networks
    Ma, Xiaojun
    Li, Ziyao
    Song, Guojie
    Shi, Chuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (12)
  • [3] Reward Propagation Using Graph Convolutional Networks
    Klissarov, Martin
    Precup, Doina
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Ontology Completion Using Graph Convolutional Networks
    Li, Na
    Bouraoui, Zied
    Schockaert, Steven
    SEMANTIC WEB - ISWC 2019, PT I, 2019, 11778 : 435 - 452
  • [5] Graph sparsification with graph convolutional networks
    Jiayu Li
    Tianyun Zhang
    Hao Tian
    Shengmin Jin
    Makan Fardad
    Reza Zafarani
    International Journal of Data Science and Analytics, 2022, 13 : 33 - 46
  • [6] Graph sparsification with graph convolutional networks
    Li, Jiayu
    Zhang, Tianyun
    Tian, Hao
    Jin, Shengmin
    Fardad, Makan
    Zafarani, Reza
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 13 (01) : 33 - 46
  • [7] Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network
    Zhu, Keren
    Liu, Mingjie
    Chen, Hao
    Zhao, Zheng
    Pan, David Z.
    PROCEEDINGS OF THE 2020 ACM/IEEE 2ND WORKSHOP ON MACHINE LEARNING FOR CAD (MLCAD '20), 2020, : 145 - 150
  • [8] Predicting Influence Probabilities using Graph Convolutional Networks
    Liu, Jing
    Chen, Yudi
    Li, Duanshun
    Park, Noseong
    Lee, Kisung
    Lee, Dongwon
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 860 - 869
  • [9] Encrypted Traffic Classification Using Graph Convolutional Networks
    Mo, Shuang
    Wang, Yifei
    Xiao, Ding
    Wu, Wenrui
    Fan, Shaohua
    Shi, Chuan
    ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 : 207 - 219
  • [10] Protein Interface Prediction using Graph Convolutional Networks
    Fout, Alex
    Byrd, Jonathon
    Shariat, Basir
    Ben-Hur, Asa
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30