Variable-step-size second-order-derivative multistep method for solving first-order ordinary differential equations in system simulation

被引:1
作者
Zhang, Lei [1 ]
Zhang, Chaofeng [1 ]
Liu, Mengya [1 ]
机构
[1] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical method; variable step size; variable order; hermite interpolation; ordinary differential equations; IMPLEMENTATION;
D O I
10.1142/S1793962320500014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial, a variable-order and variable-step-size numerical method for solving differential equations is designed. The stability properties of the formulas are discussed and the stability regions are analyzed. The deduced methods are applied to a simulation problem. The results show that the numerical method can satisfy calculation accuracy, reduce the number of calculation steps and accelerate calculation speed.
引用
收藏
页数:16
相关论文
共 23 条
  • [1] Akinfenwa O. A., 2012, J MOD MATH STAT, V5, P47
  • [2] [Anonymous], 2012, INT J NONLINEAR SCI
  • [3] Awari Y. S., 2017, AM J MATH COMPUT MOD, V2, P103
  • [4] Blasik M, 2015, 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), P1175, DOI 10.1109/MMAR.2015.7284045
  • [5] VODE - A VARIABLE-COEFFICIENT ODE SOLVER
    BROWN, PN
    BYRNE, GD
    HINDMARSH, AC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05): : 1038 - 1051
  • [6] STIFFLY STABLE 2ND DERIVATIVE MULTISTEP METHODS WITH HIGHER-ORDER AND IMPROVED STABILITY REGIONS
    CHAKRAVARTI, PC
    KAMEL, MS
    [J]. BIT, 1983, 23 (01): : 75 - 83
  • [7] Ekoro S. E., 2018, AM SCI RES J ENG TEC, V42, P297
  • [8] SECOND DERIVATIVE MULTISTEP METHODS FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS
    ENRIGHT, WH
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (02) : 321 - 331
  • [9] Farago I., 2014, MULTISTEP NUMERICAL, P72
  • [10] Variable step size control in the numerical solution of stochastic differential equations
    Gaines, JG
    Lyons, TJ
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) : 1455 - 1484