Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAIF4 Coating for High-Performance Lithium-Ion Batteries

被引:90
|
作者
Zhao, Shuoqing [1 ]
Sun, Bing [1 ]
Yan, Kang [1 ]
Zhang, Jinqiang [1 ]
Wang, Chengyin [2 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Yangzhou Univ, Coll Chem & Chem Engn, 180 Si Wang Ting Rd, Yangzhou 225002, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
cathode materials; lithium-rich material; LiAIF(4); surface coating; anionic redox; ANIONIC REDOX ACTIVITY; LI; SURFACE; OXIDE; CHALLENGES; MECHANISM;
D O I
10.1021/acsami.8b11471
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-rich oxides have been regarded as one of the most competitive cathode materials for next-generation lithium-ion batteries due to their high theoretical specific capacity and high discharge voltage. However, they are still far from being commercialized due to low rate capability and poor cycling stability. In this study, we propose a heterostructured LiAIF(4) coating strategy to overcome those obstacles. The as-developed lithium-rich cathode material shows outstanding performance including a high reversible capacity (246 mA h g(-1) at 0.1C), excellent rate capability (133 mA h g(-1) at 5C), and ultralong cycling stability (3000 cycles). Comparing with those of pristine and AIF(3)-coated lithium-rich cathode materials, the enhanced performances can be attributed to the introduction of the lithium-ion-conductive nanolayer and the generation of nonbonding On- species in the active material lattice, which enable rapid and effective lithium ion transport and diffusion. Our work provides a new strategy to develop high-performance lithium-rich cathode materials for high-energy-density lithium-ion batteries.
引用
收藏
页码:33260 / 33268
页数:9
相关论文
共 50 条
  • [21] Pb-Doped Lithium-Rich Cathode Material for High Energy Density Lithium-Ion Full Batteries
    Zhang, Xueqian
    Xiong, Yali
    Dong, Mengfei
    Hou, Zhiguo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : A2960 - A2965
  • [22] Understanding of Spinel Phases in Lithium-Rich Cathode for High-Energy-Density Lithium-Ion Batteries: A Review
    Fang, Youyou
    Zhao, Jiayu
    Su, Yuefeng
    Dong, Jinyang
    Lu, Yun
    Li, Ning
    Wang, Haoyu
    Wu, Feng
    Chen, Lai
    ENERGY MATERIAL ADVANCES, 2024, 5
  • [23] A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
    Yan, Wuwei
    Yang, Shunyi
    Huang, Youyuan
    Yang, Yong
    Yuan, Guohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819
  • [24] Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries
    Flamary-Mespoulie, Florian
    Boulineau, Adrien
    Martinez, Herve
    Suchomel, Matthew R.
    Delmas, Claude
    Pecquenard, Brigitte
    Le Cras, Frederic
    ENERGY STORAGE MATERIALS, 2020, 26 (26) : 213 - 222
  • [25] High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries
    Chen, Jia-Jia
    Symes, Mark D.
    Fan, Shao-Cong
    Zheng, Ming-Sen
    Miras, Haralampos N.
    Dong, Quan-Feng
    Cronin, Leroy
    ADVANCED MATERIALS, 2015, 27 (31) : 4649 - 4654
  • [26] Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries
    Deng, Boda
    Chen, Yuanzhi
    Wu, Pengyuan
    Han, Jiangtao
    Li, Yanru
    Zheng, Hongfei
    Xie, Qingshui
    Wang, Laisen
    Peng, Dong-Liang
    JOURNAL OF POWER SOURCES, 2019, 418 : 122 - 129
  • [27] Effect of Lithium/Transition-Metal Ratio on the Electrochemical Properties of Lithium-Rich Cathode Materials with Different Nickel/Manganese Ratios for Lithium-Ion Batteries
    Konishi, Hiroaki
    Terada, Shohei
    Okumura, Takefumi
    CHEMISTRYSELECT, 2019, 4 (32): : 9444 - 9450
  • [28] Modification Strategies and Challenges of High-Performance Lithium-Rich Manganese-Based Cathode Materials
    Tang, Weihao
    Zhu, Jiping
    Chen, Chao
    Ye, Qin
    Zeng, Fuhao
    Ma, Zeping
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [29] Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries
    Panda, Ananya
    Patra, Jagabandhu
    Hsieh, Chien-Te
    Huang, Yang-Chih
    Gandomi, Yasser Ashraf
    Fu, Chun-Chieh
    Lin, Ming-Hsien
    Juang, Ruey-Shin
    Chang, Jeng-Kuei
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [30] In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries
    Chen, Yangwen
    Sun, Beibei
    Wang, Xinchang
    Xu, Junmin
    Zhang, Liwei
    Cheng, Jipeng
    SURFACES, 2023, 6 (01): : 53 - 63