Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAIF4 Coating for High-Performance Lithium-Ion Batteries

被引:90
|
作者
Zhao, Shuoqing [1 ]
Sun, Bing [1 ]
Yan, Kang [1 ]
Zhang, Jinqiang [1 ]
Wang, Chengyin [2 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Yangzhou Univ, Coll Chem & Chem Engn, 180 Si Wang Ting Rd, Yangzhou 225002, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
cathode materials; lithium-rich material; LiAIF(4); surface coating; anionic redox; ANIONIC REDOX ACTIVITY; LI; SURFACE; OXIDE; CHALLENGES; MECHANISM;
D O I
10.1021/acsami.8b11471
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-rich oxides have been regarded as one of the most competitive cathode materials for next-generation lithium-ion batteries due to their high theoretical specific capacity and high discharge voltage. However, they are still far from being commercialized due to low rate capability and poor cycling stability. In this study, we propose a heterostructured LiAIF(4) coating strategy to overcome those obstacles. The as-developed lithium-rich cathode material shows outstanding performance including a high reversible capacity (246 mA h g(-1) at 0.1C), excellent rate capability (133 mA h g(-1) at 5C), and ultralong cycling stability (3000 cycles). Comparing with those of pristine and AIF(3)-coated lithium-rich cathode materials, the enhanced performances can be attributed to the introduction of the lithium-ion-conductive nanolayer and the generation of nonbonding On- species in the active material lattice, which enable rapid and effective lithium ion transport and diffusion. Our work provides a new strategy to develop high-performance lithium-rich cathode materials for high-energy-density lithium-ion batteries.
引用
收藏
页码:33260 / 33268
页数:9
相关论文
共 50 条
  • [1] Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries
    Zhao, Shuoqing
    Yan, Kang
    Zhang, Jinqiang
    Sun, Bing
    Wang, Guoxiu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (05) : 2208 - 2220
  • [2] Lithium-Rich Layered Oxide with a Porous Prism Architecture for High-Performance Cathode Materials of Lithium-Ion Batteries
    Chen, Zhaoyong
    Yan, Xiaoyan
    Zhu, Huali
    Wang, Yanxia
    Liu, Qiming
    Duan, Junfei
    Ji, Shan
    Pollet, Bruno G.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09): : 10973 - 10982
  • [3] Research progress on lithium-rich cathode materials for high energy density lithium-ion batteries
    Yu, Wanquan
    Li, Chenchen
    Li, Yuyun
    Yan, Jin
    Yu, Hanjing
    Zhou, Xinyu
    Ma, Yaoqiang
    Kan, Huiying
    Meng, Qi
    Dong, Peng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 986
  • [4] Polyimide Encapsulated Lithium-Rich Cathode Material for High Voltage Lithium-Ion Battery
    Zhang, Jie
    Lu, Qingwen
    Fang, Jianhua
    Wang, Jiulin
    Yang, Jun
    NuLi, Yanna
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (20) : 17965 - 17973
  • [5] Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries
    Yan, Wuwei
    Liu, Yongning
    Chong, Shaokun
    Zhou, Yaping
    Liu, Jianguo
    Zou, Zhigang
    PROGRESS IN CHEMISTRY, 2017, 29 (2-3) : 198 - 209
  • [6] The Decay Mechanism Related to Structural and Morphological Evolution in Lithium-Rich Cathode Materials for Lithium-Ion Batteries
    Liu, Qiong
    Zheng, Wei
    Lu, Zhouguang
    Zhang, Xuan
    Wan, Kai
    Luo, Jiangshui
    Fransaer, Jan
    CHEMSUSCHEM, 2020, 13 (12) : 3237 - 3242
  • [7] Recent Development on Lithium-Rich Cathode Materials for High Specific Energy Lithium-Ion Batteries
    Liu R.
    Zhang Z.
    Li H.
    Ke B.
    Guo S.
    Zhou H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 70 - 83
  • [8] Doping and Coating Synergy to Improve the Rate Capability and Cycling Stability of Lithium-Rich Cathode Materials for Lithium-Ion Batteries
    Wu, Jiliang
    Li, Hui
    Liu, Yutao
    Ye, Yu
    Yang, Yifu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (05) : 2410 - 2423
  • [9] LiVOPO4-Modified Lithium-Rich Layered Composite Cathodes for High-Performance Lithium-Ion Batteries
    Li, Tongxin
    Li, Donglin
    Zhang, Wei
    Kong, Xiangze
    Zhang, Peiqi
    Ren, Xuqiang
    Zhang, Qingbo
    Gao, Jianhang
    Fan, Xiaoyong
    Gou, Lei
    CHEMELECTROCHEM, 2021, 8 (03) : 532 - 538
  • [10] Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials
    Zhao, Shuoqing
    Guo, Ziqi
    Yan, Kang
    Wan, Shuwei
    He, Fengrong
    Sun, Bing
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 716 - 734