Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq

被引:64
作者
Lazzarotto, Cicera R. [1 ]
Nguyen, Nhu T. [2 ,3 ,6 ,7 ]
Tang, Xing [1 ]
Malagon-Lopez, Jose [2 ,3 ,4 ,5 ]
Guo, Jimmy A. [2 ,3 ]
Aryee, Martin J. [2 ,3 ,4 ,5 ]
Joung, J. Keith [2 ,3 ,4 ]
Tsai, Shengdar Q. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Hematol, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] Massachusetts Gen Hosp, Mol Pathol Unit, Ctr Canc Res, Charlestown, MA USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Massachusetts Gen Hosp, Dept Dermatol, Cutaneous Biol Res Ctr, Boston, MA 02114 USA
[7] Harvard Med Sch, Boston, MA USA
基金
美国国家卫生研究院;
关键词
DOUBLE-STRANDED BREAKS; OFF-TARGET CLEAVAGE; DNA; SPECIFICITIES;
D O I
10.1038/s41596-018-0055-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) is a sensitive and unbiased method for defining the genome-wide activity (on-target and off-target) of CRISPR-Cas9 nucleases by selective sequencing of nuclease-cleaved genomic DNA (gDNA). Here, we describe a detailed experimental and analytical protocol for CIRCLE-seq. The principle of our method is to generate a library of circularized gDNA with minimized numbers of free ends. Highly purified gDNA circles are treated with CRISPR-Cas9 ribonucleoprotein complexes, and nuclease-linearized DNA fragments are then ligated to adapters for high-throughput sequencing. The primary advantages of CIRCLE-seq as compared with other in vitro methods for defining genome-wide genome editing activity are (i) high enrichment for sequencing nuclease-cleaved gDNA/low background, enabling sensitive detection with low sequencing depth requirements; and (ii) the fact that paired-end reads can contain complete information on individual nuclease cleavage sites, enabling use of CIRCLE-seq in species without high-quality reference genomes. The entire protocol can be completed in 2 weeks, including time for gRNA cloning, sequence verification, in vitro transcription, library preparation, and sequencing.
引用
收藏
页码:2615 / 2642
页数:28
相关论文
共 50 条
[41]   Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase [J].
Xu, Tao ;
Li, Yongchao ;
Shi, Zhou ;
Hemme, Christopher L. ;
Li, Yuan ;
Zhu, Yonghua ;
Van Nostrand, Joy D. ;
He, Zhili ;
Zhou, Jizhong .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (13) :4423-4431
[42]   GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases [J].
Tsai, Shengdar Q. ;
Zheng, Zongli ;
Nguyen, Nhu T. ;
Liebers, Matthew ;
Topkar, Ved V. ;
Thapar, Vishal ;
Wyvekens, Nicolas ;
Khayter, Cyd ;
Iafrate, A. John ;
Le, Long P. ;
Aryee, Martin J. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :187-197
[43]   CRISPR-Cas9/Cas12a systems for efficient genome editing and large genomic fragment deletions in Aspergillus niger [J].
Yuan, Guoliang ;
Deng, Shuang ;
Czajka, Jeffrey J. ;
Dai, Ziyu ;
Hofstad, Beth A. ;
Kim, Joonhoon ;
Pomraning, Kyle R. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
[44]   A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing [J].
Liu, Kaiwen Ivy ;
Ramli, Muhammad Nadzim Bin ;
Woo, Cheok Wei Ariel ;
Wang, Yuanming ;
Zhao, Tianyun ;
Zhang, Xiujun ;
Yim, Guo Rong Daniel ;
Chong, Bao Yi ;
Gowher, Ali ;
Chua, Mervyn Zi Hao ;
Jung, Jonathan ;
Lee, Jia Hui Jane ;
Tan, Meng How .
NATURE CHEMICAL BIOLOGY, 2016, 12 (11) :980-+
[45]   Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J].
Walton, Russell T. ;
Christie, Kathleen A. ;
Whittaker, Madelynn N. ;
Kleinstiver, Benjamin P. .
SCIENCE, 2020, 368 (6488) :290-+
[46]   A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis [J].
Zhang, Lihua ;
Zhang, Haibing ;
Liu, Yufei ;
Zhou, Jingyu ;
Shen, Wei ;
Liu, Liming ;
Li, Qi ;
Chen, Xianzhong .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (02) :531-542
[47]   AAV-based CRISPR-Cas9 genome editing: Challenges and engineering opportunities [J].
Kabadi, Ami M. ;
Mejia-Guerra, Maria Katherine ;
Graef, John D. ;
Khan, Sohrab Z. ;
Walton, Eric M. ;
Wang, Xinzhu ;
Gersbach, Charles A. ;
Potter, Rachael .
CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2024, 29
[48]   Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system [J].
Zhang, Yihan ;
Qin, Wei ;
Lu, Xiaochan ;
Xu, Jason ;
Huang, Haigen ;
Bai, Haipeng ;
Li, Song ;
Lin, Shuo .
NATURE COMMUNICATIONS, 2017, 8
[49]   Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system [J].
Zhong, Zhaohui ;
Liu, Guanqing ;
Tang, Zhongjie ;
Xiang, Shuyue ;
Yang, Liang ;
Huang, Lan ;
He, Yao ;
Fan, Tingting ;
Liu, Shishi ;
Zheng, Xuelian ;
Zhang, Tao ;
Qi, Yiping ;
Huang, Jian ;
Zhang, Yong .
NATURE COMMUNICATIONS, 2023, 14 (01)
[50]   New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae [J].
Laughery, Marian F. ;
Hunter, Tierra ;
Brown, Alexander ;
Hoopes, James ;
Ostbye, Travis ;
Shumaker, Taven ;
Wyrick, John J. .
YEAST, 2015, 32 (12) :711-720