Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq

被引:64
作者
Lazzarotto, Cicera R. [1 ]
Nguyen, Nhu T. [2 ,3 ,6 ,7 ]
Tang, Xing [1 ]
Malagon-Lopez, Jose [2 ,3 ,4 ,5 ]
Guo, Jimmy A. [2 ,3 ]
Aryee, Martin J. [2 ,3 ,4 ,5 ]
Joung, J. Keith [2 ,3 ,4 ]
Tsai, Shengdar Q. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Hematol, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] Massachusetts Gen Hosp, Mol Pathol Unit, Ctr Canc Res, Charlestown, MA USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Massachusetts Gen Hosp, Dept Dermatol, Cutaneous Biol Res Ctr, Boston, MA 02114 USA
[7] Harvard Med Sch, Boston, MA USA
基金
美国国家卫生研究院;
关键词
DOUBLE-STRANDED BREAKS; OFF-TARGET CLEAVAGE; DNA; SPECIFICITIES;
D O I
10.1038/s41596-018-0055-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) is a sensitive and unbiased method for defining the genome-wide activity (on-target and off-target) of CRISPR-Cas9 nucleases by selective sequencing of nuclease-cleaved genomic DNA (gDNA). Here, we describe a detailed experimental and analytical protocol for CIRCLE-seq. The principle of our method is to generate a library of circularized gDNA with minimized numbers of free ends. Highly purified gDNA circles are treated with CRISPR-Cas9 ribonucleoprotein complexes, and nuclease-linearized DNA fragments are then ligated to adapters for high-throughput sequencing. The primary advantages of CIRCLE-seq as compared with other in vitro methods for defining genome-wide genome editing activity are (i) high enrichment for sequencing nuclease-cleaved gDNA/low background, enabling sensitive detection with low sequencing depth requirements; and (ii) the fact that paired-end reads can contain complete information on individual nuclease cleavage sites, enabling use of CIRCLE-seq in species without high-quality reference genomes. The entire protocol can be completed in 2 weeks, including time for gRNA cloning, sequence verification, in vitro transcription, library preparation, and sequencing.
引用
收藏
页码:2615 / 2642
页数:28
相关论文
共 50 条
[31]   Battling CRISPR-Cas9 off-target genome editing [J].
Li, Daisy ;
Zhou, Hong ;
Zeng, Xiao .
CELL BIOLOGY AND TOXICOLOGY, 2019, 35 (05) :403-406
[32]   Genome Editing with CRISPR-Cas9: Can It Get Any Better? [J].
Haeussler, Maximilian ;
Concordet, Jean-Paul .
JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) :239-250
[33]   Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification [J].
Knipping, Friederike ;
Osborn, Mark J. ;
Petri, Karl ;
Tolar, Jakub ;
Glimm, Hanno ;
von Kalle, Christof ;
Schmidt, Manfred ;
Gabriel, Richard .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2017, 4 :213-224
[34]   Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing [J].
Yoo, Kyung Hyun ;
Hennighausen, Lothar ;
Shin, Ha Youn .
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2019, 24 (01) :47-59
[35]   The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells [J].
Lee, Ciaran M. ;
Cradick, Thomas J. ;
Bao, Gang .
MOLECULAR THERAPY, 2016, 24 (03) :645-654
[36]   CRISPR-Cas9 and beyond: what's next in plant genome engineering [J].
Zess, Erin ;
Begemann, Matthew .
IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) :584-594
[37]   Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases [J].
Goharrizi, Mohammad Ali Sheikh Beig ;
Ghodsi, Saeed ;
Memarjafari, Mohammad Reza .
CURRENT PROBLEMS IN CARDIOLOGY, 2023, 48 (05)
[38]   Improving CRISPR-Cas9 mediated genome integration in interspecific hybrid yeasts [J].
Bennis, Nicole X. ;
Kostanjsek, Matic ;
van den Broek, Marcel ;
Daran, Jean-Marc G. .
NEW BIOTECHNOLOGY, 2023, 76 :49-62
[39]   CRISPR-Cas9 Genome Interrogation: A Facilitated Subdiffusive Target Search Strategy [J].
Thonnekottu, Diljith ;
Chatterjee, Debarati .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (16) :3271-3282
[40]   Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM [J].
Endo, Masaki ;
Mikami, Masafumi ;
Endo, Akira ;
Kaya, Hidetaka ;
Itoh, Takeshi ;
Nishimasu, Hiroshi ;
Nureki, Osamu ;
Toki, Seiichi .
NATURE PLANTS, 2019, 5 (01) :14-17