Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq

被引:64
作者
Lazzarotto, Cicera R. [1 ]
Nguyen, Nhu T. [2 ,3 ,6 ,7 ]
Tang, Xing [1 ]
Malagon-Lopez, Jose [2 ,3 ,4 ,5 ]
Guo, Jimmy A. [2 ,3 ]
Aryee, Martin J. [2 ,3 ,4 ,5 ]
Joung, J. Keith [2 ,3 ,4 ]
Tsai, Shengdar Q. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Hematol, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] Massachusetts Gen Hosp, Mol Pathol Unit, Ctr Canc Res, Charlestown, MA USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Massachusetts Gen Hosp, Dept Dermatol, Cutaneous Biol Res Ctr, Boston, MA 02114 USA
[7] Harvard Med Sch, Boston, MA USA
基金
美国国家卫生研究院;
关键词
DOUBLE-STRANDED BREAKS; OFF-TARGET CLEAVAGE; DNA; SPECIFICITIES;
D O I
10.1038/s41596-018-0055-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) is a sensitive and unbiased method for defining the genome-wide activity (on-target and off-target) of CRISPR-Cas9 nucleases by selective sequencing of nuclease-cleaved genomic DNA (gDNA). Here, we describe a detailed experimental and analytical protocol for CIRCLE-seq. The principle of our method is to generate a library of circularized gDNA with minimized numbers of free ends. Highly purified gDNA circles are treated with CRISPR-Cas9 ribonucleoprotein complexes, and nuclease-linearized DNA fragments are then ligated to adapters for high-throughput sequencing. The primary advantages of CIRCLE-seq as compared with other in vitro methods for defining genome-wide genome editing activity are (i) high enrichment for sequencing nuclease-cleaved gDNA/low background, enabling sensitive detection with low sequencing depth requirements; and (ii) the fact that paired-end reads can contain complete information on individual nuclease cleavage sites, enabling use of CIRCLE-seq in species without high-quality reference genomes. The entire protocol can be completed in 2 weeks, including time for gRNA cloning, sequence verification, in vitro transcription, library preparation, and sequencing.
引用
收藏
页码:2615 / 2642
页数:28
相关论文
共 50 条
[21]   The application of CRISPR/Cas9-based genome-wide screening to disease research [J].
Chen, Xiuqin ;
Zheng, Min ;
Lin, Su ;
Huang, Meiqing ;
Chen, Shaoying ;
Chen, Shilong .
MOLECULAR AND CELLULAR PROBES, 2025, 79
[22]   Tag-seq: a convenient and scalable method for genome-wide specificity assessment of CRISPR/Cas nucleases [J].
Huang, Hongxin ;
Hu, Yongfei ;
Huang, Guanjie ;
Ma, Shufeng ;
Feng, Jianqi ;
Wang, Dong ;
Lin, Ying ;
Zhou, Jiajian ;
Rong, Zhili .
COMMUNICATIONS BIOLOGY, 2021, 4 (01)
[23]   Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics [J].
East, Kyle W. ;
Newton, Jocelyn C. ;
Morzan, Uriel N. ;
Narkhede, Yogesh B. ;
Acharya, Atanu ;
Skeens, Erin ;
Jogl, Gerwald ;
Batista, Victor S. ;
Palermo, Giulia ;
Lisi, George P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (03) :1348-1358
[24]   CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification [J].
Oakes, Benjamin L. ;
Fellmann, Christof ;
Rishi, Hameet ;
Taylor, Kian L. ;
Ren, Shawn M. ;
Nadler, Dana C. ;
Yokoo, Rayka ;
Arkin, Adam P. ;
Doudna, Jennifer A. ;
Savage, David F. .
CELL, 2019, 176 (1-2) :254-+
[25]   Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes [J].
Vicencio, Jeremy ;
Sanchez-Bolanos, Carlos ;
Moreno-Sanchez, Ismael ;
Brena, David ;
Vejnar, Charles E. ;
Kukhtar, Dmytro ;
Ruiz-Lopez, Miguel ;
Cots-Ponjoan, Mariona ;
Rubio, Alejandro ;
Rodrigo Melero, Natalia ;
Crespo-Cuadrado, Jesus ;
Carolis, Carlo ;
Perez-Pulido, Antonio J. ;
Giraldez, Antonio J. ;
Kleinstiver, Benjamin P. ;
Ceron, Julian ;
Moreno-Mateos, Miguel A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[26]   Decorating chromatin for enhanced genome editing using CRISPR-Cas9 [J].
Chen, Evelyn ;
Lin-Shiao, Enrique ;
Trinidad, Marena ;
Doost, Mohammad Saffari ;
Colognori, David ;
Doudna, Jennifer A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (49)
[27]   Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J].
Svitashev, Sergei ;
Schwartz, Christine ;
Lenderts, Brian ;
Young, Joshua K. ;
Cigan, A. Mark .
NATURE COMMUNICATIONS, 2016, 7
[28]   CRISPR-Cas9; an efficient tool for precise plant genome editing [J].
Islam, Waqar .
MOLECULAR AND CELLULAR PROBES, 2018, 39 :47-52
[29]   Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9 [J].
Lemay, Marie-Laurence ;
Tremblay, Denise M. ;
Moineau, Sylvain .
ACS SYNTHETIC BIOLOGY, 2017, 6 (07) :1351-1358
[30]   CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling [J].
Platt, Randall J. ;
Chen, Sidi ;
Zhou, Yang ;
Yim, Michael J. ;
Swiech, Lukasz ;
Kempton, Hannah R. ;
Dahlman, James E. ;
Parnas, Oren ;
Eisenhaure, Thomas M. ;
Jovanovic, Marko ;
Graham, Daniel B. ;
Jhunjhunwala, Siddharth ;
Heidenreich, Matthias ;
Xavier, Ramnik J. ;
Langer, Robert ;
Anderson, Daniel G. ;
Hacohen, Nir ;
Regev, Aviv ;
Feng, Guoping ;
Sharp, Phillip A. ;
Zhang, Feng .
CELL, 2014, 159 (02) :440-455