A Chiral Prussian Blue Analogue Pushes Magneto-Chiral Dichroism Limits

被引:51
作者
Atzori, Matteo [1 ]
Breslavetz, Ivan [1 ]
Paillot, Kevin [1 ]
Inoue, Katsuya [2 ,3 ]
Rikken, Geert L. J. A. [1 ]
Train, Cyrille [1 ]
机构
[1] Univ Toulouse Paul Sabatier, Univ Grenoble Alpes, INSA Toulouse, LNCMI,CNRS,EMFL, F-38042 Grenoble, France
[2] Hiroshima Univ, Dept Chem, Hiroshima 7398524, Japan
[3] Hiroshima Univ, Ctr Chiral Sci, Hiroshima 7398524, Japan
关键词
Spectrum analysis - Charge transfer - Dichroism - Ligands - Magnetism - Single crystals - Optical data processing - Temperature distribution - Absorption spectroscopy;
D O I
10.1021/jacs.9b10970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report on magneto-chiral dichroism (MChD) detected with visible light on the chiral Prussian Blue Analogue [Mn-II(X-pnH)(H2O)]-[Cr-III(CN)(6)]center dot H2O (X = S, R; pn = 1,2-propanediamine). Single crystals suitable for magneto-optical measurements were grown starting from enantiopure chiral ligands. X-ray diffraction and magnetic measurements confirmed the 2D-layered structure of the material, its absolute configuration, and its ferrimagnetic ordered state below a critical temperature T-C of 38 K. Absorption and MChD spectra were measured between 450 and 900 nm from room temperature down to 4 K. At 4 K the electronic spectrum features spin-allowed and spin-forbidden transitions of Grin centers, spin-forbidden transitions of the Mn-II centers, and metal-to-metal charge transfer bands. The MChD spectra below the magnetic ordering temperature exhibit intense absolute configuration-dependent MChD signals. The temperature dependence of these signals closely follows the material magnetization. Under a magnetic field of 0.46 T, the most intense contribution to MChD represents 2.6% T-1 of the absorbed intensity, one of the highest values observed to date.
引用
收藏
页码:20022 / 20025
页数:4
相关论文
共 26 条
  • [1] Albert G., 2008, ORIGIN CHIRALITY MOL
  • [2] Magnetic molecules - Chirality and magnetism shake hands
    Barron, Laurence D.
    [J]. NATURE MATERIALS, 2008, 7 (09) : 691 - 692
  • [3] MAGNETO-CHIRAL BIREFRINGENCE AND DICHROISM
    BARRON, LD
    VRBANCICH, J
    [J]. MOLECULAR PHYSICS, 1984, 51 (03) : 715 - 730
  • [4] Structure and magnetic properties of a chiral two-dimensional ferrimagnet with Tc of 38 K
    Inoue, K
    Kikuchi, K
    Ohba, M
    Ökawa, H
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (39) : 4810 - 4813
  • [5] Jorgensen C. K., 1969, INORG CHIM ACTA, V3, P313
  • [6] Magneto-Chiral Dichroism of Organic Compounds
    Kitagawa, Yuichi
    Segawa, Hiroshi
    Ishii, Kazuyuki
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (39) : 9133 - 9136
  • [7] A multichannel magneto-chiral dichroism spectrometer
    Kopnov, G.
    Rikken, G. L. J. A.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (05)
  • [8] Lever A.B.P., 1984, Stud. Phys. Theor. Chem, V33, pXVI, DOI [DOI 10.1063/1.3035225, 10.1063/1.3035225]
  • [9] Manipulating Metal-to-Metal Charge Transfer for Materials with Switchable Functionality
    Meng, Yin-Shan
    Sato, Osamu
    Liu, Tao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (38) : 12216 - 12226
  • [10] Magneto-chiral dichroism of CsCuCl3
    Nakagawa, N.
    Abe, N.
    Toyoda, S.
    Kimura, S.
    Zaccaro, J.
    Gautier-Luneau, I.
    Luneau, D.
    Kousaka, Y.
    Sera, A.
    Sera, M.
    Inoue, K.
    Akimitsu, J.
    Tokunaga, Y.
    Arima, T.
    [J]. PHYSICAL REVIEW B, 2017, 96 (12)