On split regular Hoin-Leibniz algebras

被引:11
作者
Cao, Yan [1 ,2 ]
Chen, Liangyun [1 ]
Sun, Bing [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Harbin Univ Sci & Technol, Dept Basic Educ, Rongcheng Campus, Rongcheng 264300, Peoples R China
关键词
Hom-Leibniz algebra; Leibniz algebra; root system; root space; LIE-ALGEBRAS; TRIPLE-SYSTEMS; DEFORMATIONS; COHOMOLOGY;
D O I
10.1142/S0219498818501852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the class of split regular Hom-Leibniz algebras as the natural generalization of split Leibniz algebras and split regular Horn-Lie algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular Horn- Leibniz algebra L is of the form L = U + Sigma([j]is an element of Lambda/similar to)I([j] )with U a subspace of the abelian subalgebra H and any III, a well described ideal of L, satisfying [I[j], I[k]] = 0 if [j] not equal [k]. Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized.
引用
收藏
页数:18
相关论文
共 21 条
[1]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[2]  
Albeverio SA., 2006, Rev. Mat. Complut, V19, P183
[3]   Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras [J].
Ammar, F. ;
Mabrouk, S. ;
Makhlouf, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) :1898-1913
[4]  
Ammar F, 2011, J LIE THEORY, V21, P813
[5]  
Aragon M. J., 2015, J LIE THEORY, V25, P875
[6]  
Ayupov SA, 1998, ALGEBRA AND OPERATOR THEORY, P1
[7]   ON LEVI'S THEOREM FOR LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) :184-185
[8]   ON ENGEL'S THEOREM FOR LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) :1388-1389
[9]  
Calderon A. J., 2012, LINEAR ALGEBRA APPL, V436, P1648
[10]  
Calderon A. J., 2008, P INDIAN ACAD SCI MA, V118, P351