Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir

被引:24
作者
Kuno, Toshiki [1 ,2 ]
Sahashi, Yuki [3 ,4 ,5 ]
Kawahito, Shinpei [6 ]
Takahashi, Mai [1 ]
Iwagami, Masao [7 ]
Egorova, Natalia N. [8 ]
机构
[1] Icahn Sch Med Mt Sinai, Mt Sinai Beth Israel, Dept Med, New York, NY 10029 USA
[2] Montefiore Med Ctr, Albert Einstein Coll Med, Dept Med, Div Cardiol, New York, NY USA
[3] Gifu Univ, Grad Sch Med, Dept Cardiol, Gifu, Japan
[4] Yokohama City Univ, Grad Sch Data Sci, Dept Hlth Data Sci, Yokohama, Kanagawa, Japan
[5] Gifu Heart Ctr, Dept Cardiovasc Med, Gifu, Japan
[6] Tecotec Inc, Tokyo, Japan
[7] Univ Tsukuba, Dept Hlth Serv Res, Tsukuba, Ibaraki, Japan
[8] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY 10029 USA
关键词
COVID-19; machine learning; mortality; New York; remdesivir; steroid; CARDIAC INJURY;
D O I
10.1002/jmv.27393
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We aimed to create the prediction model of in-hospital mortality using machine learning methods for patients with coronavirus disease 2019 (COVID-19) treated with steroid and remdesivir. We reviewed 1571 hospitalized patients with laboratory confirmed COVID-19 from the Mount Sinai Health System treated with both steroids and remdesivir. The important variables associated with in-hospital mortality were identified using LASSO (least absolute shrinkage and selection operator) and SHAP (SHapley Additive exPlanations) through the light gradient boosting model (GBM). The data before February 17th, 2021 (N = 769) was randomly split into training and testing datasets; 80% versus 20%, respectively. Light GBM models were created with train data and area under the curves (AUCs) were calculated. Additionally, we calculated AUC with the data between February 17th, 2021 and March 30th, 2021 (N = 802). Of the 1571 patients admitted due to COVID-19, 331 (21.1%) died during hospitalization. Through LASSO and SHAP, we selected six important variables; age, hypertension, oxygen saturation, blood urea nitrogen, intensive care unit admission, and endotracheal intubation. AUCs using training and testing datasets derived from the data before February 17th, 2021 were 0.871/0.911. Additionally, the light GBM model has high predictability for the latest data (AUC: 0.881) (). A high-value prediction model was created to estimate in-hospital mortality for COVID-19 patients treated with steroid and remdesivir.
引用
收藏
页码:958 / 964
页数:7
相关论文
共 50 条
[31]   Patterns of Comorbidity and In-Hospital Mortality in Older Patients With COVID-19 Infection [J].
Mahmoud, Mona ;
Carmisciano, Luca ;
Tagliafico, Luca ;
Muzyka, Mariya ;
Rosa, Gianmarco ;
Signori, Alessio ;
Bassetti, Matteo ;
Nencioni, Alessio ;
Monacelli, Fiammetta .
FRONTIERS IN MEDICINE, 2021, 8
[32]   Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features [J].
Schiaffino, Simone ;
Codari, Marina ;
Cozzi, Andrea ;
Albano, Domenico ;
Ali, Marco ;
Arioli, Roberto ;
Avola, Emanuele ;
Bna, Claudio ;
Cariati, Maurizio ;
Carriero, Serena ;
Cressoni, Massimo ;
Danna, Pietro S. C. ;
Della Pepa, Gianmarco ;
Di Leo, Giovanni ;
Dolci, Francesco ;
Falaschi, Zeno ;
Flor, Nicola ;
Foa, Riccardo A. ;
Gitto, Salvatore ;
Leati, Giovanni ;
Magni, Veronica ;
Malavazos, Alexis E. ;
Mauri, Giovanni ;
Messina, Carmelo ;
Monfardini, Lorenzo ;
Pasche, Alessio ;
Pesapane, Filippo ;
Sconfienza, Luca M. ;
Secchi, Francesco ;
Segalini, Edoardo ;
Spinazzola, Angelo ;
Tombini, Valeria ;
Tresoldi, Silvia ;
Vanzulli, Angelo ;
Vicentin, Ilaria ;
Zagaria, Domenico ;
Fleischmann, Dominik ;
Sardanelli, Francesco .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (06)
[33]   Ferritin level predicts in-hospital mortality in hypertensive patients with COVID-19 [J].
Skakun, O. Z. ;
Serediuk, N. M. .
ZAPOROZHYE MEDICAL JOURNAL, 2023, 25 (01) :11-15
[34]   Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry [J].
Casas-Rojo, Jose-Manuel ;
Ventura, Paula Sol ;
Santos, Juan Miguel Anton ;
de Latierro, Aitor Ortiz ;
Arevalo-Lorido, Jose Carlos ;
Mauri, Marc ;
Rubio-Rivas, Manuel ;
Gonzalez-Vega, Rocio ;
Giner-Galvan, Vicente ;
Otero Perpina, Barbara ;
Fonseca-Aizpuru, Eva ;
Muino, Antonio ;
Del Corral-Beamonte, Esther ;
Gomez-Huelgas, Ricardo ;
Arnalich-Fernandez, Francisco ;
Llorente Barrio, Monica ;
Sancha-Lloret, Aresio ;
Lorite, Isabel Rabago ;
Loureiro-Amigo, Jose ;
Pintos-Martinez, Santiago ;
Garcia-Sardon, Eva ;
Montano-Martinez, Adrian ;
Rojano-Rivero, Maria Gloria ;
Ramos-Rincon, Jose-Manuel ;
Lopez-Escobar, Alejandro .
INTERNAL AND EMERGENCY MEDICINE, 2023, 18 (06) :1711-1722
[35]   Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry [J].
José-Manuel Casas-Rojo ;
Paula Sol Ventura ;
Juan Miguel Antón Santos ;
Aitor Ortiz de Latierro ;
José Carlos Arévalo-Lorido ;
Marc Mauri ;
Manuel Rubio-Rivas ;
Rocío González-Vega ;
Vicente Giner-Galvañ ;
Bárbara Otero Perpiñá ;
Eva Fonseca-Aizpuru ;
Antonio Muiño ;
Esther Del Corral-Beamonte ;
Ricardo Gómez-Huelgas ;
Francisco Arnalich-Fernández ;
Mónica Llorente Barrio ;
Aresio Sancha-Lloret ;
Isabel Rábago Lorite ;
José Loureiro-Amigo ;
Santiago Pintos-Martínez ;
Eva García-Sardón ;
Adrián Montaño-Martínez ;
María Gloria Rojano-Rivero ;
José-Manuel Ramos-Rincón ;
Alejandro López-Escobar .
Internal and Emergency Medicine, 2023, 18 :1711-1722
[36]   Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction [J].
Zhu, Xiaoli ;
Xie, Bojian ;
Chen, Yijun ;
Zeng, Hanqian ;
Hu, Jinxi .
CLINICA CHIMICA ACTA, 2024, 554
[37]   In-hospital mortality prediction using frailty scale and severity score in elderly patients with severe COVID-19 [J].
Na, Yong Sub ;
Kim, Jin Hyoung ;
Baek, Moon Seong ;
Kim, Won-Young ;
Baek, Ae-Rin ;
Lee, Bo Young ;
Seong, Gil Myeong ;
Lee, Song-I .
ACUTE AND CRITICAL CARE, 2022, 37 (03) :303-311
[38]   COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm [J].
Lorenzoni, Giulia ;
Sella, Nicolo ;
Boscolo, Annalisa ;
Azzolina, Danila ;
Bartolotta, Patrizia ;
Pasin, Laura ;
Pettenuzzo, Tommaso ;
De Cassai, Alessandro ;
Baratto, Fabio ;
Toffoletto, Fabio ;
De Rosa, Silvia ;
Fullin, Giorgio ;
Peta, Mario ;
Rosi, Paolo ;
Polati, Enrico ;
Zanella, Alberto ;
Grasselli, Giacomo ;
Pesenti, Antonio ;
Navalesi, Paolo ;
Gregori, Dario .
JOURNAL OF ANESTHESIA ANALGESIA AND CRITICAL CARE, 2021, 1 (01)
[39]   Machine learning prediction for COVID-19 disease severity at hospital admission [J].
Raman, Ganesh ;
Ashraf, Bilal ;
Demir, Yusuf Kemal ;
Kershaw, Corey D. D. ;
Cheruku, Sreekanth ;
Atis, Murat ;
Atis, Ahsen ;
Atar, Mustafa ;
Chen, Weina ;
Ibrahim, Ibrahim ;
Bat, Taha ;
Mete, Mutlu .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
[40]   Machine learning prediction for COVID-19 disease severity at hospital admission [J].
Ganesh Raman ;
Bilal Ashraf ;
Yusuf Kemal Demir ;
Corey D. Kershaw ;
Sreekanth Cheruku ;
Murat Atis ;
Ahsen Atis ;
Mustafa Atar ;
Weina Chen ;
Ibrahim Ibrahim ;
Taha Bat ;
Mutlu Mete .
BMC Medical Informatics and Decision Making, 23