Pt nanowires as electrocatalysts for proton-exchange membrane fuel cells applications: A review

被引:7
|
作者
Valerio Neto, Edmundo S. [1 ,2 ]
Almeida, Caio V. S. [1 ,2 ]
Colmati, Flavio [3 ]
Ciapina, Eduardo G. [4 ]
Salazar-Banda, Giancarlo R. [1 ,2 ]
Eguiluz, Katlin I. B. [1 ,2 ]
机构
[1] Inst Technol & Res ITP, Lab Electrochem & Nanotechnol, BR-49032490 Aracaju, Sergipe, Brazil
[2] Univ Tiradentes, Proc Engn Grad Program PEP, BR-49032490 Aracaju, Sergipe, Brazil
[3] Univ Fed Goias, Inst Quim, Ave Esperanca S-N, BR-74690900 Goiania, Go, Brazil
[4] Sao Paulo State Univ Unesp, Dept Chem & Energy, Sch Engn, Guaratingueta, SP, Brazil
关键词
Nanowires; Fuel cells; PEMFC; DEFC Anode; Cathode; Efficiency; OXYGEN REDUCTION REACTION; ATOMIC LAYER DEPOSITION; ELECTROCHEMICAL OXIDATION; SINGLE-CRYSTAL; METHANOL ELECTROOXIDATION; PLATINUM CATALYSTS; CARBON NANOSPHERES; CONTROLLED GROWTH; METAL NANOWIRES; ETHANOL;
D O I
10.1016/j.jelechem.2022.116185
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Due to their high electrocatalytic activity, Pt nanoparticles are widely used as catalysts in low-temperature fuel cells (FCs). However, the high cost and limited supply of Pt boosted the search to enhance its utilization and intrinsic catalytic activity. Recent research shows that Pt and Pt-based nanowires (NWs) fulfill both the possibility of cost reduction and provide surfaces with specific needs. Herein, we review the use of Pt NWs and their alloys as state-of-the-art materials in FC systems. First, several preparation methods of NWs are presented, such as hard-template/templateless, chemical vapor deposition, electrodeposition, pulsed laser ablation, self-assembly, and surfactant/surfactantless synthesis. Next, we discuss their use as anodic materials for methanol and ethanol FCs and cathodic catalysts applied for the oxygen reduction reaction. The morphology of NWs results in materials with preferential exposure of highly active crystal facets, a reduced amount of low coordinated atoms, a high surface aspect ratio, and low charge and mass transport resistances, improving the activity, stability, and durability of catalysts.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Pt Alloy Electrocatalysts for Proton Exchange Membrane Fuel Cells: A Review
    Liu, Zhiming
    Ma, Lingling
    Zhang, Jack
    Hongsirikarn, Kitiya
    Goodwin, James G., Jr.
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2013, 55 (03): : 255 - 288
  • [2] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
    Suo, Ni
    Cao, Longsheng
    Qin, Xiaoping
    Shao, Zhigang
    CHINESE PHYSICS B, 2022, 31 (12)
  • [3] Performance of Non-Precious Metal Electrocatalysts in Proton-Exchange Membrane Fuel Cells: A Review
    Krishnan, Srivarshini Rukmani
    Verstraete, Dries
    Aguey-Zinsou, Francois
    CHEMELECTROCHEM, 2024, 11 (17):
  • [4] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
    索妮
    曹龙生
    秦晓平
    邵志刚
    Chinese Physics B, 2022, (12) : 619 - 628
  • [5] Annealing Behaviour of Pt and PtNi Nanowires for Proton Exchange Membrane Fuel Cells
    Mardle, Peter
    Du, Shangfeng
    MATERIALS, 2018, 11 (08)
  • [6] Investigation of cathode electrocatalysts composed of electrospun Pt nanowires and Pt/C for proton exchange membrane fuel cells
    Sung, Ming-Tung
    Chang, Min-Hsing
    Ho, Ming-Hua
    JOURNAL OF POWER SOURCES, 2014, 249 : 320 - 326
  • [7] Recent developments in Pt-Co catalysts for proton-exchange membrane fuel cells
    Wang, Chenyu
    Spendelow, Jacob S.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 28
  • [8] Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells
    Zhao, Lei
    Zhu, Jianbing
    Zheng, Yun
    Xiao, Meiling
    Gao, Rui
    Zhang, Zhen
    Wen, Guobin
    Dou, Haozhen
    Deng, Ya-Ping
    Yu, Aiping
    Wang, Zhenbo
    Chen, Zhongwei
    ADVANCED ENERGY MATERIALS, 2022, 12 (02)
  • [9] Coupled Dynamics of Anode and Cathode in Proton-Exchange Membrane Fuel Cells
    Nogueira, Jessica A.
    Krischer, Katharina
    Varela, Hamilton
    CHEMPHYSCHEM, 2019, 20 (22) : 3081 - 3088
  • [10] Research on electrocatalysts of proton exchange membrane fuel cells
    Zhao Xiaolin
    Han Minfang
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 645 - 647