Laser-Induced Photoreduction for Selective Tuning of the Oxidation State and Crystal Structure of Hematite Nanorods

被引:8
作者
Kong, Heejung [1 ]
Hwang, Suwon [1 ]
Lee, Junhee [1 ]
Park, Suk Woo [2 ]
Han, Yong-Su [2 ]
Yeo, Junyeob [1 ]
机构
[1] Kyungpook Natl Univ, Dept Phys, Novel Appl Nano Opt Lab, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, KNU Instrumental Anal Ctr, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
IRON-OXIDES; HEAT ACCUMULATION; HIGH-PERFORMANCE; WATER OXIDATION; OXYGEN VACANCY; MAGNETITE; REDUCTION; NANOPARTICLES; ALPHA-FE2O3; GROWTH;
D O I
10.1021/acs.jpcc.1c02254
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The laser-induced photoreduction process is proposed to obtain patterned magnetite (Fe3O4) nanorod (NR) arrays or the oxygen vacancy (OV) engineering of the hematite (alpha-Fe2O3) NRs. A continuous-wave laser beam, with a wavelength of 532 nm, is focused on the hematite NRs that are in contact with a liquid reducing agent to provide the thermal energy for triggering the reduction reaction. The path of the laser beam can be controlled through computer software, enabling the reduction reaction to occur in the arbitrary desired area. At lower laser powers than that at which the direct transformation of hematite into magnetite occurs, hematite NRs with a high concentration of OV are produced. The high OV concentration contributes to improving the electrical conductivity of the hematite NRs by increasing the donor density. The OV-abundant hematite NR array is applied to a photoanode in a photoelectrochemical (PEC) water-splitting cell. It exhibits an enhanced PEC performance due to its donor density being higher in comparison with the bare hematite NRs.
引用
收藏
页码:17918 / 17928
页数:11
相关论文
共 65 条
  • [1] Thermally driven and ball-milled hematite to magnetite transformation
    Betancur, JD
    Restrepo, J
    Palacio, CA
    Morales, AL
    Mazo-Zuluaga, J
    Fernández, JJ
    Pérez, O
    Valderruten, JF
    Bohórquez, A
    [J]. HYPERFINE INTERACTIONS, 2003, 148 (1-4): : 163 - 175
  • [2] Anatase nanocrystals coating on silica-coated magnetite: Role of polyacrylic acid treatment and its photocatalytic properties
    Cheng, J. P.
    Ma, R.
    Li, M.
    Wu, J. S.
    Liu, F.
    Zhang, X. B.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2012, 210 : 80 - 86
  • [3] Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles
    Cherepy, NJ
    Liston, DB
    Lovejoy, JA
    Deng, HM
    Zhang, JZ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) : 770 - 776
  • [4] Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition
    Chernyshova, I. V.
    Hochella, M. F., Jr.
    Madden, A. S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (14) : 1736 - 1750
  • [5] Work function of ITO substrates and band-offsets at the TPD/ITO interface determined by photoelectron spectroscopy
    Chkoda, L
    Heske, C
    Sokolowski, M
    Umbach, E
    Steuber, F
    Staudigel, J
    Stössel, M
    Simmerer, J
    [J]. SYNTHETIC METALS, 2000, 111 : 315 - 319
  • [6] deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
  • [7] 2-B
  • [8] Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia
    Ding, Qi
    Liu, Dongfang
    Guo, Dawei
    Yang, Fang
    Pang, Xingyun
    Che, B. R. Enchao
    Zhou, Naizhen
    Xie, Jun
    Sun, Jianfei
    Huang, Zhihai
    Gu, Ning
    [J]. BIOMATERIALS, 2017, 124 : 35 - 46
  • [9] HEMATITE SINGLE-CRYSTAL REDUCTION INTO MAGNETITE WITH CO-CO2
    ETTABIROU, M
    DUPRE, B
    GLEITZER, C
    [J]. METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1988, 19 (02): : 311 - 317
  • [10] HOMOGENEOUS AND HETEROGENEOUS NUCLEATIONS IN THE POLYOL PROCESS FOR THE PREPARATION OF MICRON AND SUB-MICRON SIZE METAL PARTICLES
    FIEVET, F
    LAGIER, JP
    BLIN, B
    BEAUDOIN, B
    FIGLARZ, M
    [J]. SOLID STATE IONICS, 1989, 32-3 : 198 - 205