The Maximum Number of Stars in a Graph Without Linear Forest

被引:0
|
作者
Huang, Sumin [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Turan number; Generalized Turan number; Star; Linear forest; TURAN NUMBER; COPIES;
D O I
10.1007/s00373-022-02580-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two graphs J and H, the generalized Turan number, denoted by ex(n, J, H), is the maximum number of copies of J in an H-free graph of order n. A linear forest F is the disjoint union of paths. In this paper, we determine ex(n, S-r, F) when n is large enough, which generalizes the results on ex(n, S-r, P-k) and ex(n, (k + 1)P-2). Finally, we prose a problem related to the number of graph copies in an F-free graph under shifting operations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Maximum Number of Spanning Trees of a Graph with Given Matching Number
    Muhuo Liu
    Guangliang Zhang
    Kinkar Chandra Das
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3725 - 3732
  • [22] The maximum tree of a random forest in the configuration graph
    Pavlov, Yu L.
    SBORNIK MATHEMATICS, 2021, 212 (09) : 1329 - 1346
  • [23] A note on bounds for the maximum traceable number of a graph
    Fujie, Futaba
    ARS COMBINATORIA, 2014, 113 : 353 - 359
  • [24] The maximum number of short paths in a Halin graph
    He, Shunhai
    Liu, Huiqing
    DISCRETE OPTIMIZATION, 2023, 50
  • [25] The maximum number of odd cycles in a planar graph
    Heath to Department of Mathematics and Statistics, California State Polytechnic University Pomona, Pomona
    CA, United States
    不详
    IA, United States
    不详
    AL, United States
    J. Graph Theory,
  • [26] THE RAMSEY NUMBER OF A GRAPH WITH BOUNDED MAXIMUM DEGREE
    CHVATAL, C
    RODL, V
    SZEMEREDI, E
    TROTTER, WT
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) : 239 - 243
  • [27] On the maximum number of cliques in a graph embedded in a surface
    Dujmovic, Vida
    Fijavz, Gasper
    Joret, Gwenael
    Sulanke, Thom
    Wood, David R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (08) : 1244 - 1252
  • [28] On the maximum number of independent cycles in a bipartite graph
    Wang, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 67 (01) : 152 - 164
  • [29] The maximum number of odd cycles in a planar graph
    Heath, Emily
    Martin, Ryan R.
    Wells, Chris
    JOURNAL OF GRAPH THEORY, 2025, 108 (04) : 745 - 780
  • [30] Maximum number of 3-paths in a graph
    Byer, OD
    ARS COMBINATORIA, 2001, 61 : 73 - 79