A remark on minimal Lagrangian diffeomorphisms and the Monge-Ampere equation

被引:2
作者
Urbas, John [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Ctr Math Applicat, Canberra, ACT 0200, Australia
关键词
BOUNDARY-VALUE PROBLEM;
D O I
10.1017/S0004972700039605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a counterexample to a theorem of Jon Wolfson concerning the existence of globally smooth solutions of the second boundary value problem for Monge-Ampere equations in two dimensions, or equivalently, on the existence of minimal Lagrangian diffeomorphisms between simply connected domains in R-2.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 6 条
[2]  
Caffarelli L. A., 1992, J. Amer. Math. Soc., V5, P99, DOI 10.2307/2152752
[3]   Boundary regularity of maps with convex potentials .2. [J].
Caffarelli, LA .
ANNALS OF MATHEMATICS, 1996, 144 (03) :453-496
[4]  
DELANOE P, 1991, ANN I H POINCARE-AN, V8, P443
[5]  
Urbas J, 1997, J REINE ANGEW MATH, V487, P115
[6]  
Wolfson JG, 1997, J DIFFER GEOM, V46, P335