Linear port-Hamiltonian descriptor systems

被引:92
作者
Beattie, Christopher [1 ]
Mehrmann, Volker [2 ]
Xu, Hongguo [3 ]
Zwart, Hans [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TU Berlin, Inst Math MA 4 5, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Port-Hamiltonian system; Descriptor system; Differential-algebraic equation; Passivity; Stability; System transformation; Differentiation index; Strangeness-index; Skew-adjoint operator; PRESERVING MODEL-REDUCTION; REGULARIZATION; STABILIZATION; FORMULATION; EQUATIONS; NETWORKS; DYNAMICS; FORM;
D O I
10.1007/s00498-018-0223-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Multi-valued control of port-Hamiltonian systems
    Castanos, Fernando
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2022, 19 (04): : 419 - 429
  • [42] Port-Hamiltonian Modeling for Control
    van der Schaft, Arjan
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 393 - 416
  • [43] On the passivity based control of irreversible processes: A port-Hamiltonian approach
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    Couenne, Francoise
    AUTOMATICA, 2016, 64 : 105 - 111
  • [44] A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems
    Ponce, Cristobal
    Wu, Yongxin
    Le Gorrec, Yann
    Ramirez, Hector
    APPLIED MATHEMATICAL MODELLING, 2024, 134 : 434 - 451
  • [45] Dual Observer-Based Compensator Design for Linear Port-Hamiltonian Systems
    Kotyczka, Paul
    Wang, Mei
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2908 - 2913
  • [46] Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach
    Ramirez, Hector
    Maschke, Bernhard
    Sbarbaro, Daniel
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) : 513 - 520
  • [47] Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems
    Humaloja, Jukka-Pekka
    Paunonen, Lassi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (05) : 1480 - 1486
  • [48] Robust port-Hamiltonian representations of passive systems
    Beattie, Christopher A.
    Mehrmann, Volker
    Van Dooren, Paul
    AUTOMATICA, 2019, 100 : 182 - 186
  • [49] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452
  • [50] On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    Zwart, Hans
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1700 - 1713