Linear port-Hamiltonian descriptor systems

被引:92
作者
Beattie, Christopher [1 ]
Mehrmann, Volker [2 ]
Xu, Hongguo [3 ]
Zwart, Hans [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TU Berlin, Inst Math MA 4 5, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Port-Hamiltonian system; Descriptor system; Differential-algebraic equation; Passivity; Stability; System transformation; Differentiation index; Strangeness-index; Skew-adjoint operator; PRESERVING MODEL-REDUCTION; REGULARIZATION; STABILIZATION; FORMULATION; EQUATIONS; NETWORKS; DYNAMICS; FORM;
D O I
10.1007/s00498-018-0223-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast
    Jacob, Birgit
    Kaiser, Julia T.
    Zwart, Hans
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4646 - 4665
  • [32] STABILITY AND PASSIVITY FOR A CLASS OF DISTRIBUTED PORT-HAMILTONIAN NETWORKS
    Gernandt, Hannes
    Hinsen, Dorothea
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 2936 - 2962
  • [33] Finite-time thermodynamics of port-Hamiltonian systems
    Delvenne, Jean-Charles
    Sandberg, Henrik
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 123 - 132
  • [34] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [35] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [36] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [37] STABILITY AND STABILIZATION OF INFINITE-DIMENSIONAL LINEAR PORT-HAMILTONIAN SYSTEMS
    Augner, Bjoern
    Jacob, Birgit
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (02): : 207 - 229
  • [38] Shaping the Energy of Port-Hamiltonian Systems Without Solving PDE's
    Borja, Pablo
    Cisneros, Rafael
    Ortega, Romeo
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 5713 - 5718
  • [39] A constructive procedure for energy shaping of port-Hamiltonian systems
    Borja, Pablo
    Cisneros, Rafael
    Ortega, Romeo
    AUTOMATICA, 2016, 72 : 230 - 234
  • [40] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937