Brownian motion under intermittent harmonic potentials

被引:38
|
作者
Santra, Ion [1 ]
Das, Santanu [2 ]
Nath, Sujit Kumar [3 ,4 ]
机构
[1] Raman Res Inst, Bengaluru 560080, India
[2] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bengaluru 560089, India
[3] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Fac Biol Sci, Leeds LS2 9JT, W Yorkshire, England
关键词
stochastic resetting; stochastically fluctuating harmonic trap; Brownian motion; Ornstein Uhlenbeck process; exact solutions; first-passage time; PHYSICS;
D O I
10.1088/1751-8121/ac12a0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effects of an intermittent harmonic potential of strength mu = mu (0) nu-that switches on and off stochastically at a constant rate gamma, on an overdamped Brownian particle with damping coefficient nu. This can be thought of as a realistic model for realisation of stochastic resetting. We show that this dynamics admits a stationary solution in all parameter regimes and compute the full time dependent variance for the position distribution and find the characteristic relaxation time. We find the exact non-equilibrium stationary state distributions in the limits-(i) gamma MUCH LESS-THAN mu (0) which shows a non-trivial distribution, in addition as mu (0) -> infinity, we get back the result for resetting with refractory period; (ii) gamma >> mu (0) where the particle relaxes to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength of the original potential and (iii) intermediate gamma = 2n mu (0) for n = 1, 2. The mean first passage time (MFPT) to find a target exhibits an optimisation with the switching rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a stationary value at large rates. MFPT also shows similar behavior with respect to the potential strength. Our results can be verified in experiments on colloids using optical tweezers.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Convex Hull of Brownian Motion and Brownian Bridge
    Sebek, Stjepan
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04) : 459 - 475
  • [32] The flotation rates of fine spherical particles under Brownian and convective motion
    Ramirez, JA
    Zinchenko, A
    Loewenberg, M
    Davis, RH
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (02) : 149 - 157
  • [33] Brownian motion in a gas of charged particles under the influence of a magnetic field
    Tothova, Jana
    Lisy, Vladimir
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 559
  • [34] Powers of Brownian Green Potentials
    Claude Dellacherie
    Mauricio Duarte
    Servet Martínez
    Jaime San Martín
    Pierre Vandaele
    Potential Analysis, 2022, 56 : 227 - 265
  • [35] Powers of Brownian Green Potentials
    Dellacherie, Claude
    Duarte, Mauricio
    Martinez, Servet
    San Martin, Jaime
    Vandaele, Pierre
    POTENTIAL ANALYSIS, 2022, 56 (02) : 227 - 265
  • [36] Path Regularity of the Brownian Motion and the Brownian Sheet
    H. Kempka
    C. Schneider
    J. Vybiral
    Constructive Approximation, 2024, 59 : 485 - 539
  • [37] Catastrophes in brownian motion
    Guz, SA
    Mannella, R
    Sviridov, MV
    PHYSICS LETTERS A, 2003, 317 (3-4) : 233 - 241
  • [38] Brownian Motion of Graphene
    Marago, Onofrio M.
    Bonaccorso, Francesco
    Saija, Rosalba
    Privitera, Giulia
    Gucciardi, Pietro G.
    Iati, Maria Antonia
    Calogero, Giuseppe
    Jones, Philip H.
    Borghese, Ferdinando
    Denti, Paolo
    Nicolosi, Valeria
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (12) : 7515 - 7523
  • [39] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [40] Brownian motion of a torus
    Thaokar, Rochish M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 317 (1-3) : 650 - 657