Brownian motion under intermittent harmonic potentials

被引:38
|
作者
Santra, Ion [1 ]
Das, Santanu [2 ]
Nath, Sujit Kumar [3 ,4 ]
机构
[1] Raman Res Inst, Bengaluru 560080, India
[2] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bengaluru 560089, India
[3] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Fac Biol Sci, Leeds LS2 9JT, W Yorkshire, England
关键词
stochastic resetting; stochastically fluctuating harmonic trap; Brownian motion; Ornstein Uhlenbeck process; exact solutions; first-passage time; PHYSICS;
D O I
10.1088/1751-8121/ac12a0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effects of an intermittent harmonic potential of strength mu = mu (0) nu-that switches on and off stochastically at a constant rate gamma, on an overdamped Brownian particle with damping coefficient nu. This can be thought of as a realistic model for realisation of stochastic resetting. We show that this dynamics admits a stationary solution in all parameter regimes and compute the full time dependent variance for the position distribution and find the characteristic relaxation time. We find the exact non-equilibrium stationary state distributions in the limits-(i) gamma MUCH LESS-THAN mu (0) which shows a non-trivial distribution, in addition as mu (0) -> infinity, we get back the result for resetting with refractory period; (ii) gamma >> mu (0) where the particle relaxes to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength of the original potential and (iii) intermediate gamma = 2n mu (0) for n = 1, 2. The mean first passage time (MFPT) to find a target exhibits an optimisation with the switching rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a stationary value at large rates. MFPT also shows similar behavior with respect to the potential strength. Our results can be verified in experiments on colloids using optical tweezers.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Brownian motion in shear flows, harmonic potentials and colloidal crystals
    Schram, PPJM
    Trigger, SA
    PHYSICA B, 1996, 228 (1-2): : 91 - 96
  • [2] Brownian motion and harmonic analysis on Sierpinski carpets
    Barlow, MT
    Bass, RF
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04): : 673 - 744
  • [3] Computation of the Survival Probability of Brownian Motion with Drift Subject to an Intermittent Step Barrier
    Guillaume, Tristan
    APPLIEDMATH, 2024, 4 (03): : 1080 - 1097
  • [4] Exact time evolution in harmonic quantum Brownian motion
    Gaioli, FH
    Garcia-Alvarez, ET
    PHYSICA A, 1999, 264 (3-4): : 338 - 344
  • [5] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Gautie, Tristan
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 752 - 805
  • [6] Brownian motion under annihilation dynamics
    de Soria, Maria Isabel Garcia
    Maynar, Pablo
    Trizac, Emmanuel
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [7] The long time behavior of Brownian motion in tilted periodic potentials
    Cheng, Liang
    Yip, Nung Kwan
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 297 : 1 - 32
  • [8] On the excursions of drifted Brownian motion and the successive passage times of Brownian motion
    Abundo, Mario
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 176 - 182
  • [9] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [10] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    Probability Theory and Related Fields, 2002, 122 : 471 - 493