Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

被引:38
作者
Liu, Shaolin [1 ]
Yang, Dinghui [1 ]
Dong, Xingpeng [1 ]
Liu, Qiancheng [2 ]
Zheng, Yongchang [3 ,4 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[3] Chinese Acad Med Sci, Dept Liver Surg, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[4] Peking Union Med Coll, Beijing 100730, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ABSORBING BOUNDARY-CONDITIONS; SEISMIC TOMOGRAPHY; ADJOINT METHODS; FORM INVERSION; PROPAGATION; 2D;
D O I
10.5194/se-8-969-2017
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed "misfit gradients") or Frechet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
引用
收藏
页码:969 / 986
页数:18
相关论文
共 40 条
[1]   Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models [J].
Capdeville, Y ;
Chaljub, E ;
Vilotte, JP ;
Montagner, JP .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2003, 152 (01) :34-67
[2]  
Chen M., 2015, J GEOPHYS RES, V120, P22
[3]  
CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529
[4]  
Cohen G., 2001, Higher-order numerical methods for transient wave equations
[5]   Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media [J].
Collino, F ;
Tsogka, C .
GEOPHYSICS, 2001, 66 (01) :294-307
[6]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66
[7]  
De Basabe JD, 2007, GEOPHYSICS, V72, pT81, DOI 10.1190/1.2785O46
[8]  
Fichtner A, 2011, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-642-15807-0_1
[9]   Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Storage Format [J].
Greathouse, Joseph L. ;
Daga, Mayank .
SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, :769-780
[10]  
Haskell N. A., 1953, B SEISMOL SOC AM, V43, P17, DOI DOI 10.1785/BSSA0430010017