Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel Fabricated by Selective Laser Melting

被引:42
作者
Chen, Wei [1 ]
Yin, Guangfu [1 ]
Feng, Zai [2 ]
Liao, Xiaoming [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Hengchuang Bolian Technol Co Ltd, Chengdu 610044, Sichuan, Peoples R China
关键词
selective laser melting; 316L stainless steel; SEM; mechanical properties testing; defects; PROCESS PARAMETERS; RESIDUAL-STRESSES; BEHAVIOR; PARTS; DENSIFICATION; TITANIUM; ALLOY; COMPOSITES; POROSITY; TEXTURE;
D O I
10.3390/met8090729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 +/- 9.4 MPa and yield strength (YS) of 519.1 +/- 5.9 MPa, and an attendant elongation (EL) of 14.6 +/- 1.9%, and a maximum of 97.92 +/- 0.13% and a high microhardness 291 +/- 6 HV0.1. It has been verified that the fine powder (similar to 16 m) could be used in additive manufacturing with proper printing parameters.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J].
Attar, H. ;
Calin, M. ;
Zhang, L. C. ;
Scudino, S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 593 :170-177
[2]   Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review [J].
Attar, Hooyar ;
Ehtemam-Haghighi, Shima ;
Kent, Damon ;
Dargusch, Matthew S. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2018, 133 :85-102
[3]   Effect of Powder Particle Shape on the Properties of In Situ Ti-TiB Composite Materials Produced by Selective Laser Melting [J].
Attar, Hooyar ;
Prashanth, Konda G. ;
Zhang, Lai-Chang ;
Calin, Mariana ;
Okulov, Ilya V. ;
Scudino, Sergio ;
Yang, Chao ;
Eckert, Juergen .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2015, 31 (10) :1001-1005
[4]   Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J].
Attar, Hooyar ;
Boenisch, Matthias ;
Calin, Mariana ;
Zhang, Lai-Chang ;
Scudino, Sergio ;
Eckert, Juergen .
ACTA MATERIALIA, 2014, 76 :13-22
[5]   Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting [J].
Casati, R. ;
Lemke, J. ;
Vedani, M. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (08) :738-744
[6]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[7]   Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels [J].
Cyr, E. ;
Asgari, H. ;
Shamsdini, S. ;
Purdy, M. ;
Hosseinkhani, K. ;
Mohammadi, M. .
MATERIALS LETTERS, 2018, 212 :174-177
[8]   Additive manufacturing: Technology, applications and research needs [J].
Guo N. ;
Leu M.C. .
Frontiers of Mechanical Engineering, 2013, 8 (3) :215-243
[9]   Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development [J].
Hao, L. ;
Dadbakhsh, S. ;
Seaman, O. ;
Felstead, M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (17) :5793-5801
[10]   Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting [J].
Hussein, Ahmed ;
Hao, Liang ;
Yan, Chunze ;
Everson, Richard .
MATERIALS & DESIGN, 2013, 52 :638-647