On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls

被引:0
作者
Ushakov, V. N. [1 ]
Pershakov, M. V. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620108, Russia
基金
俄罗斯基础研究基金会;
关键词
control system; control; differential inclusion; geometric constraints; reachable set; approximation; DOMAINS;
D O I
10.1134/S0081543821030226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear control system in Euclidean space on a finite time interval with controls subject to geometric constraints. The question of constructing lower and upper (by inclusion) approximations of reachable sets of this system is studied. Under certain conditions, estimates are obtained for the discrepancy (in the Hausdorff metric) between the lower and upper approximations of the reachable sets.
引用
收藏
页码:S211 / S227
页数:17
相关论文
共 16 条
[1]  
CHERNOUSKO FL, 1988, ESTIMATION PHASE STA
[2]  
Gornov AYu., 2009, COMPUTATIONAL TECHNO
[3]  
Guseinov KG, 1998, PMM-J APPL MATH MEC+, V62, P169
[4]   On Extremal Properties of Boundary Points of Reachable Sets for a System with Integrally Constrained Control [J].
Gusev, Mikhail I. ;
Zykov, Igor V. .
IFAC PAPERSONLINE, 2017, 50 (01) :4082-4087
[5]   On the Boundedness of Outer Polyhedral Estimates for Reachable Sets of Linear Systems [J].
Kostousova, E. K. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (06) :918-932
[6]  
Krasovskii N. N., 1974, Positional differential games
[7]  
Kurzhanski A. B., 1992, Dynamics and Control, V2, P87, DOI 10.1007/BF02169492
[8]  
Kurzhanski A. B., 1993, Advances in Nonlinear Dynamics and Control: A Report from Russia (Progress in Systems and Control Theory), V17, DOI [10.1007/978-1-4612-0349-0_4, DOI 10.1007/978-1-4612-0349-0_4, DOI 10.1007/978-1-4612-0349-04]
[9]  
Kurzhanski AB., 2009, SELECTED WORKS
[10]  
KURZHANSKI AB, 1977, CONTROL OBSERVATION