Abadie-type constraint qualification for mathematical programs with equilibrium constraints

被引:75
作者
Flegel, ML [1 ]
Kanzow, C [1 ]
机构
[1] Univ Wurzburg, Inst Appl Math & Stat, Wurzburg, Germany
关键词
mathematical programs with equilibrium constraints; Abadie constraint qualification; Slater constraint qualification; optimality conditions;
D O I
10.1007/s10957-004-1176-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Mathematical programs with equilibrium constraints (MPEC) are nonlinear programs which do not satisfy any of the common constraint qualifications (CQ). In order to obtain first-order optimality conditions, constraint qualifications tailored to the MPECs have been developed and researched in the past. In this paper, we introduce a new Abadie-type constraint qualification for MPECs. We investigate sufficient conditions for this new CQ, discuss its relationship to several existing MPEC constraint qualifications, and introduce a new Slater-type constraint qualifications. Finally, we prove a new stationarity concept to be a necessary optimality condition under our new Abadie-type CQ.
引用
收藏
页码:595 / 614
页数:20
相关论文
共 14 条
[1]  
Bazaraa M. S., 2013, NONLINEAR PROGRAMMIN
[2]  
Chen Y., 1995, Optimization, V32, P193, DOI 10.1080/02331939508844048
[3]   A Fritz John approach to first order optimality conditions for mathematical programs with equilibrium constraints [J].
Flegel, ML ;
Kanzow, C .
OPTIMIZATION, 2003, 52 (03) :277-286
[4]  
FLEGEL ML, 2002, ABADIE TYPE CONSTRAI
[5]  
FLEGEL ML, 2002, 248 U WURZB I APPL M
[6]  
Geiger Carl., 2002, Theorie und Numerik restringierter Optimierungsaufgaben
[7]  
Luo ZQ, 1996, Mathematical Programs with Equilibrium Constraints
[8]  
Mangasarian OL., 1994, NONLINEAR PROGRAMMIN, DOI [DOI 10.1137/1.9781611971255, 10.1137/1.9781611971255]
[9]  
Outrata J.V., 1998, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory
[10]   Optimality conditions for a class of mathematical programs with equilibrium constraints [J].
Outrata, JV .
MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (03) :627-644