Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects

被引:194
作者
Ma, Ning [1 ]
Ma, Xi [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Anim Sci & Technol, State Key Lab Anim Nutr, Beijing 100193, Peoples R China
[2] Shihezi Univ, Coll Anim Sci & Technol, Xinjiang 832003, Peoples R China
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Biochem, Dept Internal Med, Dallas, TX 75390 USA
来源
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY | 2019年 / 18卷 / 01期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
amino acids; antimicrobial peptides; aryl hydrocarbon receptor; gut-microbiome-immune axis; metabolite; ARYL-HYDROCARBON RECEPTOR; CHAIN FATTY-ACIDS; MODULATING INTESTINAL PERMEABILITY; TOLL-LIKE RECEPTORS; COLONIC MICROBIOTA; GASTROINTESTINAL MICROFLORA; VISCERAL HYPERSENSITIVITY; TRYPTOPHAN-METABOLITES; SEROTONIN METABOLISM; POSTWEANING DIARRHEA;
D O I
10.1111/1541-4337.12401
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Dietary amino acids (AAs) are not only absorbed and metabolized by enterocytes but also available to the microbiota in the gut in mammals. In addition to serving as the materials for protein synthesis, AAs can act as precursors for numerous metabolic end products in reactions involving the intestinal mucosa and microbiota. After penetrating the epithelial barrier, microbial metabolites can enter and accumulate in the host circulatory system, where they are sensed by immune cells and then elicit a wide range of biological functions via different receptors and mechanisms. Some intestinal bacteria can also synthesize certain AAs, implying that the exchange of AAs between hosts and microorganisms is bidirectional. Changes in AA composition and abundance can affect AA-metabolizing bacterial communities and modulate macrophages and dendritic cells via toll-like receptors (TLRs), autoinducer-2 (AI-2), and NOD-like receptors (NLRs), and also regulate the gut-microbiome-immune axis via aryl hydrocarbon receptor (AhR), serotonin/5-hydroxytryptamine (5-HT), and other signaling pathways, all of which play critical roles in regulating the intestinal mucosal immunity and microbiota directly or indirectly, contributing to intestinal homeostasis. Therefore, the current findings of the effects of certain functional AAs on the gut-microbiome-immune axis are reviewed, illustrating signaling pathways of tryptophan (Trp), glutamine (Gln), methionine (Met), and branched-chain AAs (BCAAs) in the intestinal barrier and regarding immunity via crosstalk with their receptors or ligands. These findings have shed light on the clinical applications of dietary AAs in improving gut microbiota and mucosal immunity, therefore benefiting the gut as well as local and systemic health.
引用
收藏
页码:221 / 242
页数:22
相关论文
共 210 条
[1]   Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function [J].
Abreu, Maria T. .
NATURE REVIEWS IMMUNOLOGY, 2010, 10 (02) :131-143
[2]   Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome [J].
Abubucker, Sahar ;
Segata, Nicola ;
Goll, Johannes ;
Schubert, Alyxandria M. ;
Izard, Jacques ;
Cantarel, Brandi L. ;
Rodriguez-Mueller, Beltran ;
Zucker, Jeremy ;
Thiagarajan, Mathangi ;
Henrissat, Bernard ;
White, Owen ;
Kelley, Scott T. ;
Methe, Barbara ;
Schloss, Patrick D. ;
Gevers, Dirk ;
Mitreva, Makedonka ;
Huttenhower, Curtis .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
[3]   Isolation and characterization of enteric bacteria from the hindgut of Formosan termite [J].
Adams, L ;
Boopathy, R .
BIORESOURCE TECHNOLOGY, 2005, 96 (14) :1592-1598
[4]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[5]   Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota [J].
Atarashi, Koji ;
Tanoue, Takeshi ;
Oshima, Kenshiro ;
Suda, Wataru ;
Nagano, Yuji ;
Nishikawa, Hiroyoshi ;
Fukuda, Shinji ;
Saito, Takuro ;
Narushima, Seiko ;
Hase, Koji ;
Kim, Sangwan ;
Fritz, Joelle V. ;
Wilmes, Paul ;
Ueha, Satoshi ;
Matsushima, Kouji ;
Ohno, Hiroshi ;
Olle, Bernat ;
Sakaguchi, Shimon ;
Taniguchi, Tadatsugu ;
Morita, Hidetoshi ;
Hattori, Masahira ;
Honda, Kenya .
NATURE, 2013, 500 (7461) :232-+
[6]   Production of indolic compounds by rumen bacteria isolated from grazing ruminants [J].
Attwood, G ;
Li, D ;
Pacheco, D ;
Tavendale, M .
JOURNAL OF APPLIED MICROBIOLOGY, 2006, 100 (06) :1261-1271
[7]   Diversity of Clostridium difficile in pigs and other animals in Slovenia [J].
Avbersek, Jana ;
Janezic, Sandra ;
Pate, Mateja ;
Rupnik, Maja ;
Zidaric, Valerija ;
Logar, Katarina ;
Vengust, Modest ;
Zemljic, Mateja ;
Pirs, Tina ;
Ocepek, Matjaz .
ANAEROBE, 2009, 15 (06) :252-255
[8]   Nitrogen Metabolism in the Rumen [J].
Bach, A. ;
Calsamiglia, S. ;
Stern, M. D. .
JOURNAL OF DAIRY SCIENCE, 2005, 88 (13) :E9-E21
[9]  
Baker K, 2014, FRONT IMMUNOL, V5, DOI [10.3389/fimmu.2014.00408, 10.3389/fimmu.2014.00664]
[10]   First-pass splanchnic metabolism of dietary cysteine in weanling pigs [J].
Bauchart-Thevret, C. ;
Cottrell, J. ;
Stoll, B. ;
Burrin, D. G. .
JOURNAL OF ANIMAL SCIENCE, 2011, 89 (12) :4093-4099