Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space

被引:59
|
作者
Andrade, F. M. [1 ]
Silva, E. O. [2 ]
Pereira, M. [1 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, MA, Brazil
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 04期
关键词
SELF-ADJOINT EXTENSION; QUANTUM-MECHANICS; BOUNDARY-CONDITIONS; POINT INTERACTIONS; SCATTERING; POTENTIALS; PARTICLE; CRYSTAL; FIELD;
D O I
10.1103/PhysRevD.85.041701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the bound state and scattering problem of a spin-one-half particle undergone to an Aharonov-Bohm potential in a conical space in the nonrelativistic limit. The crucial problem of the delta-function singularity coming from the Zeeman spin interaction with the magnetic flux tube is solved through the self-adjoint extension method. Using two different approaches already known in the literature, both based on the self-adjoint extension method, we obtain the self-adjoint extension parameter to the bound state and scattering scenarios in terms of the physics of the problem. It is shown that such a parameter is the same for both situations. The method is general and is suitable for any quantum system with a singular Hamiltonian that has bound and scattering states.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] THE SPIN POLARIZATION OF FERMIONS IN THE GAUGE AHARONOV-BOHM FIELD
    VOROPAEV, SA
    SPASOV, DA
    EUROPHYSICS LETTERS, 1990, 12 (07): : 609 - 612
  • [42] Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential
    Ferrari, A. F.
    Gomes, M.
    Stechhahn, C. A.
    PHYSICAL REVIEW D, 2007, 76 (08)
  • [43] Aharonov-Bohm Scattering for Relativistic Particles in (3+1)-Dimensional Noncommutative Space with Spin Dependence
    Stechhahn, C. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (04) : 1129 - 1135
  • [44] Spin dependent current in a modified Aharonov-Bohm interferometer
    Seo, K. C.
    Ihm, G.
    Lee, S. J.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06): : 2185 - 2187
  • [45] Spin-splitting of Aharonov-Bohm oscillations in an antidot
    Kataoka, M
    Ford, CJB
    Faini, G
    Mailly, D
    Simmons, MY
    Ritchie, DA
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 782 - 786
  • [46] Spin transport in an Aharonov-Bohm ring with exchange interaction
    Savenko, I. G.
    Polozkov, R. G.
    Shelykh, I. A.
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [47] Detecting noncommutative phase space by the Aharonov-Bohm effect
    Liang, Shi-Dong
    Li, Haoqi
    Huang, Guang-Yao
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [48] The Aharonov-Bohm effect in distorted space and cosmic strings
    Sitenko, YA
    Mishchenko, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1995, 108 (05): : 1516 - 1553
  • [49] Aharonov-Bohm Phase for an Electric Dipole on a Noncommutative Space
    Ababekri, Mamut
    Anwar, Abduwali
    Hekim, Mamatabdulla
    Rashidin, Reyima
    FRONTIERS IN PHYSICS, 2016, 4
  • [50] Electron spin transport through an Aharonov-Bohm ring - a spin switch
    Jia, CL
    Wang, SJ
    Luo, HG
    An, JH
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (12) : 2043 - 2052