Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space

被引:59
作者
Andrade, F. M. [1 ]
Silva, E. O. [2 ]
Pereira, M. [1 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, MA, Brazil
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 04期
关键词
SELF-ADJOINT EXTENSION; QUANTUM-MECHANICS; BOUNDARY-CONDITIONS; POINT INTERACTIONS; SCATTERING; POTENTIALS; PARTICLE; CRYSTAL; FIELD;
D O I
10.1103/PhysRevD.85.041701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the bound state and scattering problem of a spin-one-half particle undergone to an Aharonov-Bohm potential in a conical space in the nonrelativistic limit. The crucial problem of the delta-function singularity coming from the Zeeman spin interaction with the magnetic flux tube is solved through the self-adjoint extension method. Using two different approaches already known in the literature, both based on the self-adjoint extension method, we obtain the self-adjoint extension parameter to the bound state and scattering scenarios in terms of the physics of the problem. It is shown that such a parameter is the same for both situations. The method is general and is suitable for any quantum system with a singular Hamiltonian that has bound and scattering states.
引用
收藏
页数:5
相关论文
共 42 条
[1]   On the Aharonov-Bohm Hamiltonian [J].
Adami, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :43-53
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
Albeverio S., 2004, AMS Chelsea Series, Vsecond
[4]   ENHANCED BARYON NUMBER VIOLATION DUE TO COSMIC STRINGS [J].
ALFORD, MG ;
MARCHRUSSELL, J ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1989, 328 (01) :140-158
[5]   A PRAGMATIC APPROACH TO THE PROBLEM OF THE SELF-ADJOINT EXTENSION OF HAMILTON OPERATORS WITH THE AHARONOV-BOHM POTENTIAL [J].
AUDRETSCH, J ;
JASPER, U ;
SKARZHINSKY, VD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :2359-2367
[6]   Geometric phase for a neutral particle in the presence of a topological defect [J].
Bakke, K. ;
Nascimento, J. R. ;
Furtado, C. .
PHYSICAL REVIEW D, 2008, 78 (06)
[7]   Continuum effects for the mean-field and pairing properties of weakly bound nuclei [J].
Bennaceur, K ;
Dobaczewski, J ;
Ploszajczak, M .
PHYSICAL REVIEW C, 1999, 60 (03) :16
[8]   DEFICIENCY-INDEXES AND SINGULAR BOUNDARY-CONDITIONS IN QUANTUM-MECHANICS [J].
BULLA, W ;
GESZTESY, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) :2520-2528
[9]   SINGULAR POTENTIALS [J].
CASE, KM .
PHYSICAL REVIEW, 1950, 80 (05) :797-806
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162