In-situ characterization of tungsten microcracking in Selective Laser Melting

被引:42
作者
Vrancken, B. [1 ]
King, W. E. [1 ]
Matthews, M. J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
来源
10TH CIRP CONFERENCE ON PHOTONIC TECHNOLOGIES [LANE 2018] | 2018年 / 74卷
关键词
Tungsten; Additive Manufacturing; Selective Laser Melting; Microcracking; In-situ monitoring; Laser powder bed fusion; BEHAVIOR; FRACTURE;
D O I
10.1016/j.procir.2018.08.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive Manufacturing is a promising way of processing tungsten, with opportunities to create more complex parts than are possible using other powder metallurgical routes. This may lead to extended applications such as collimators, in fusion reactors, or in other structurally loaded, high temperature environments. The poor thermal shock resistance and ductile-to-brittle transition that occurs in tungsten above room temperature are challenges that hinder production of fully dense and crack free parts. This research employs high speed in-situ monitoring of Selective Laser Melting of single tracks to visualize crack initiation and propagation. The circumstances that lead to cracking are correlated with microstructural morphology and processing conditions. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 17 条
[1]   Mechanical properties of tungsten alloys with Y2O3 and titanium additions [J].
Aguirre, M. V. ;
Martin, A. ;
Pastor, J. Y. ;
LLorca, J. ;
Monge, M. A. ;
Pareja, R. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :516-519
[2]   Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding [J].
Antusch, Steffen ;
Armstrong, David E. J. ;
Ben Britton, T. ;
Commin, Lorelei ;
Gibson, James S. K. -L. ;
Greuner, Henri ;
Hoffmann, Jan ;
Knabl, Wolfram ;
Pintsuk, Gerald ;
Rieth, Michael ;
Roberts, Steve G. ;
Weingaertner, Tobias .
NUCLEAR MATERIALS AND ENERGY, 2015, 3-4 :22-31
[3]   W-2 wt.%Y2O3 composite: Microstructure and mechanical properties [J].
Battabyal, M. ;
Schaeublin, R. ;
Spaetig, P. ;
Baluc, N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 538 :53-57
[4]   Fracture behaviour of polycrystalline tungsten [J].
Gaganidze, Ermile ;
Rupp, Daniel ;
Aktaa, Jarir .
JOURNAL OF NUCLEAR MATERIALS, 2014, 446 (1-3) :240-245
[5]   Fracture toughness of polycrystalline tungsten alloys [J].
Gludovatz, B. ;
Wurster, S. ;
Hoffmann, A. ;
Pippan, R. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (06) :674-678
[7]   Thermo-mechanical calculations on operation temperature limits of tungsten as plasma facing material [J].
Hirai, T. ;
Pintsuk, G. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (04) :389-393
[8]   Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J].
Hirai, T. ;
Pintsuk, G. ;
Linke, J. ;
Batilliot, M. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :751-754
[9]   Effect of potassium doping on the thermal shock behavior of tungsten [J].
Huang, Bo ;
Xiao, Ye ;
He, Bo ;
Yang, Jijun ;
Liao, Jiali ;
Yang, Yuanyou ;
Liu, Ning ;
Lian, Youyun ;
Liu, Xiang ;
Tang, Jun .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 51 :19-24
[10]   Selective laser melting of tungsten and tungsten alloys [J].
Ivekovic, Aljaz ;
Omidvari, Neda ;
Vrancken, Bey ;
Lietaert, Karel ;
Thijs, Lore ;
Vanmeensel, Kim ;
Vleugels, Jef ;
Kruth, Jean-Pierre .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 72 :27-32