Federated Learning for Multicenter Collaboration in Ophthalmology Implications for Clinical Diagnosis and Disease Epidemiology

被引:17
作者
Hanif, Adam [1 ]
Lu, Charles [2 ,3 ,4 ]
Chang, Ken [2 ,3 ,4 ]
Singh, Praveer [2 ,3 ,4 ]
Coyner, Aaron S. [1 ]
Brown, James M. [5 ]
Ostmo, Susan [1 ]
Chan, Robison V. Paul [6 ]
Rubin, Daniel [7 ]
Chiang, Michael F. [8 ]
Kalpathy-Cramer, Jayashree [2 ,3 ,4 ]
Campbell, John Peter [1 ]
机构
[1] Oregon Hlth & Sci Univ, Dept Ophthalmol, Portland, OR 97201 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Massachusetts Gen Hosp, Ctr Clin Data Sci, Boston, MA 02114 USA
[4] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[5] Univ Lincoln, Sch Comp Sci, Lincoln, England
[6] Univ Illinois, Ophthalmol & Visual Sci, Chicago, IL USA
[7] Stanford Univ, Sch Med, Ctr Biomed Informat Res, Stanford, CA 94305 USA
[8] NEI, NIH, Bethesda, MD 20892 USA
来源
OPHTHALMOLOGY RETINA | 2022年 / 6卷 / 08期
基金
美国国家卫生研究院;
关键词
Deep learning; Epidemiology; Federated learning; Retinopathy of prematurity; PLUS DISEASE; RETINOPATHY; PREMATURITY; SEVERITY; TELEMEDICINE;
D O I
10.1016/j.oret.2022.03.005
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Objective: To utilize a deep learning (DL) model trained via federated learning (FL), a method of collaborative training without sharing patient data, to delineate institutional differences in clinician diagnostic paradigms and disease epidemiology in retinopathy of prematurity (ROP). Design: Evaluation of a diagnostic test or technology. Subjects and Controls: We included 5245 patients with wide-angle retinal imaging from the neonatal intensive care units of 7 institutions as part of the Imaging and Informatics in ROP study. Images were labeled with the clinical diagnoses of plus disease (plus, preplus, no plus), which were documented in the chart, and a reference standard diagnosis was determined by 3 image-based ROP graders and the clinical diagnosis. Methods: Demographics (birth weight, gestational age) and clinical diagnoses for all eye examinations were recorded from each institution. Using an FL approach, a DL model for plus disease classification was trained using only the clinical labels. The 3 class probabilities were then converted into a vascular severity score (VSS) for each eye examination, as well as an "institutional VSS, " in which the average of the VSS values assigned to patients' higher severity ( "worse ") eyes at each examination was calculated for each institution. Main Outcome Measures: We compared demographics, clinical diagnoses of plus disease, and institutional VSSs between institutions using the McNemar-Bowker test, 2-proportion Z test, and 1-way analysis of variance with post hoc analysis by the Tukey-Kramer test. Single regression analysis was performed to explore the relationship between demographics and VSSs. Results: We found that the proportion of patients diagnosed with preplus disease varied significantly between institutions (P < 0.001). Using the DL-derived VSS trained on the data from all institutions using FL, we observed differences in the institutional VSS and the level of vascular severity diagnosed as no plus (P < 0.001) across institutions. A significant, inverse relationship between the institutional VSS and mean gestational age was found (P = 0.049, adjusted R-2 = 0.49). Conclusions: A DL-derived ROP VSS developed without sharing data between institutions using FL identified differences in the clinical diagnoses of plus disease and overall levels of ROP severity between institutions. Federated learning may represent a method to standardize clinical diagnoses and provide objective measurements of disease for image-based diseases. (c) 2022 by the American Academy of Ophthalmology
引用
收藏
页码:650 / 656
页数:7
相关论文
共 21 条
[1]   Addressing the Third Epidemic of Retinopathy of Prematurity Through Telemedicine and Technology: A Systematic Review [J].
Al-Khaled, Tala ;
Valikodath, Nita G. ;
Patel, Samir N. ;
Cole, Emily ;
Chervinko, Margaret ;
Douglas, Christina E. ;
Tsai, Andrew S. H. ;
Wu, Wei-Chi ;
Campbell, J. Peter ;
Chiang, Michael F. ;
Chan, R. V. Paul .
JOURNAL OF PEDIATRIC OPHTHALMOLOGY & STRABISMUS, 2021, 58 (04) :261-+
[2]   Aggressive Posterior Retinopathy of Prematurity Clinical and Quantitative Imaging Features in a Large North American Cohort [J].
Bellsmith, Kellyn N. ;
Brown, James ;
Kim, Sang Jin ;
Goldstein, Isaac H. ;
Coyner, Aaron ;
Ostmo, Susan ;
Gupta, Kishan ;
Chan, R. V. Paul ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
OPHTHALMOLOGY, 2020, 127 (08) :1105-1112
[3]   Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks [J].
Brown, James M. ;
Campbell, J. Peter ;
Beers, Andrew ;
Chang, Ken ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Dy, Jennifer ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
JAMA OPHTHALMOLOGY, 2018, 136 (07) :803-810
[4]   Evaluation of a Deep Learning-Derived Quantitative Retinopathy of Prematurity Severity Scale [J].
Campbell, J. Peter ;
Kim, Sang Jin ;
Brown, James M. ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
OPHTHALMOLOGY, 2021, 128 (07) :1070-1076
[5]   Diagnostic Discrepancies in Retinopathy of Prematurity Classification [J].
Campbell, J. Peter ;
Ryan, Michael C. ;
Lore, Emily ;
Tian, Peng ;
Ostmo, Susan ;
Jonas, Karyn ;
Chan, R. V. Paul ;
Chiang, Michael F. .
OPHTHALMOLOGY, 2016, 123 (08) :1795-1801
[6]   Interexpert agreement of plus disease diagnosis in retinopathy of prematurity [J].
Chiang, Michael F. ;
Jiang, Lei ;
Gelman, Rony ;
Du, Yunling E. ;
Flynn, John T. .
ARCHIVES OF OPHTHALMOLOGY, 2007, 125 (07) :875-880
[7]   International Classification of Retinopathy of Prematurity, Third Edition [J].
Chiang, Michael F. ;
Quinn, Graham E. ;
Fielder, Alistair R. ;
Ostmo, Susan R. ;
Chan, R. V. Paul ;
Berrocal, Audina ;
Binenbaum, Gil ;
Blair, Michael ;
Campbell, J. Peter ;
Capone, Antonio ;
Chen, Yi ;
Dai, Shuan ;
Ells, Anna ;
Fleck, Brian W. ;
Good, William V. ;
Hartnett, M. Elizabeth ;
Holmstrom, Gerd ;
Kusaka, Shunji ;
Kychenthal, Andres ;
Lepore, Domenico ;
Lorenz, Birgit ;
Martinez-Castellanos, Maria Ana ;
Ozdek, Sengul ;
Ademola-Popoola, Dupe ;
Reynolds, James D. ;
Shah, Parag K. ;
Shapiro, Michael ;
Stahl, Andreas ;
Toth, Cynthia ;
Vinekar, Anand ;
Visser, Linda ;
Wallace, David K. ;
Wu, Wei-Chi ;
Zhao, Peiquan ;
Zin, Andrea .
OPHTHALMOLOGY, 2021, 128 (10) :E51-E68
[8]   Variability in Plus Disease Identified Using a Deep Learning-Based Retinopathy of Prematurity Severity Scale [J].
Choi, Rene Y. ;
Brown, James M. ;
Kalpathy-Cramer, Jayashree ;
Chan, R. V. Paul ;
Ostmo, Susan ;
Chiang, Michael F. ;
Campbell, J. Peter .
OPHTHALMOLOGY RETINA, 2020, 4 (10) :1016-1021
[9]   Single-Examination Risk Prediction of Severe Retinopathy of Prematurity [J].
Coyner, Aaron S. ;
Chen, Jimmy S. ;
Singh, Praveer ;
Schelonka, Robert L. ;
Jordan, Brian K. ;
McEvoy, Cindy T. ;
Anderson, Jamie E. ;
Chan, R. V. Paul ;
Sonmez, Kemal ;
Erdogmus, Deniz ;
Chiang, Michael F. ;
Kalpathy-Cramer, Jayashree ;
Campbell, J. Peter .
PEDIATRICS, 2021, 148 (06)
[10]   A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment [J].
Gupta, Kishan ;
Campbell, J. Peter ;
Taylor, Stanford ;
Brown, James M. ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Dy, Jennifer ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Kalpathy-Cramer, Jayashree ;
Kim, Sang J. ;
Chiang, Michael F. ;
Kim, Sang Jin ;
Sonmez, Kemal ;
Jonas, Karyn ;
Horowitz, Jason ;
Coki, Osode ;
Eccles, Cheryl-Ann ;
Sarna, Leora ;
Orlin, Anton ;
Berrocal, Audina ;
Negron, Catherin ;
Denser, Kimberly ;
Cumming, Kristi ;
Osentoski, Tammy ;
Check, Tammy ;
Zajechowski, Mary ;
Lee, Thomas ;
Kruger, Evan ;
McGovern, Kathryn ;
Simmons, Charles ;
Murthy, Raghu ;
Galvis, Sharon ;
Rotter, Jerome ;
Chen, Ida ;
Li, Xiaohui ;
Taylor, Kent ;
Roll, Kaye ;
Ana Martinez-Castellanos, Maria ;
Salinas-Longoria, Samantha ;
Romero, Rafael ;
Arriola, Andrea ;
Olguin-Manriquez, Francisco ;
Meraz-Gutierrez, Miroslava ;
Dulanto-Reinoso, Carlos M. ;
Montero-Mendoza, Cristina .
JAMA OPHTHALMOLOGY, 2019, 137 (09) :1029-1036