A diagnosis method based on depthwise separable convolutional neural network for the attachment on the blade of marine current turbine

被引:9
作者
Xin, Bin [1 ]
Zheng, Yilai [1 ]
Wang, Tianzhen [1 ,2 ]
Chen, Lisu [1 ]
Wang, Yide [1 ,3 ]
机构
[1] Shanghai Maritime Univ, Dept Elect Automat, Shanghai 200135, Peoples R China
[2] Univ Brest, FRE CNRS IRDL 3744, Brest, France
[3] Univ Nantes, Inst Elect & Telecommun Rennes IETR, Nantes, France
基金
上海市自然科学基金;
关键词
Marine current turbine; blade attachment; convolutional neural network; fault diagnosis; deep neural networks;
D O I
10.1177/0959651820937841
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To diagnose the attachment of marine current turbine, this article proposes a method based on convolutional neural network and the concepts of depthwise separable convolution to achieve feature extraction. The method consists of three steps: data preprocessing, feature extraction and fault diagnosis. This method can diagnose the fault degree of blade imbalance and uniform attachment in underwater environment with strong currents and complex spatiotemporal variability. It can extract distinct image feature in harsh marine environments by using a convolutional neural network. In addition, this method is robust for the recognition of blurred pictures under high-speed rotation.
引用
收藏
页码:1916 / 1926
页数:11
相关论文
共 35 条
[1]   Evolutionary path planning for autonomous underwater vehicles in a variable ocean [J].
Alvarez, A ;
Caiti, A ;
Onken, R .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (02) :418-429
[2]   Attraction, Challenge and Current Status of Marine Current Energy [J].
Chen, Hao ;
Tang, Tianhao ;
Ait-Ahmed, Nadia ;
Benbouzid, Mohamed El Hachemi ;
Machmoum, Mohamed ;
Zaim, Mohamed El-Hadi .
IEEE ACCESS, 2018, 6 :12665-12685
[3]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[4]   Under What Conditions SAR Along-Track Interferometry is Suitable for Assessment of Tidal Energy Resource [J].
Ferreira, Rafael Malheiro ;
Estefen, Segen Farid ;
Romeiser, Roland .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (11) :5011-5022
[5]  
He K., 2016, Proceedings of the IEEE conference on computer vision and pattern recognition, DOI DOI 10.1109/CVPR.2016.90
[6]  
Howard A. G., 2017, arXiv
[7]   Searching for MobileNetV3 [J].
Howard, Andrew ;
Sandler, Mark ;
Chu, Grace ;
Chen, Liang-Chieh ;
Chen, Bo ;
Tan, Mingxing ;
Wang, Weijun ;
Zhu, Yukun ;
Pang, Ruoming ;
Vasudevan, Vijay ;
Le, Quoc V. ;
Adam, Hartwig .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1314-1324
[8]  
Huang G., 2017, P IEEE C COMP VIS PA, P4700, DOI [DOI 10.1109/CVPR.2017.243, 10.1109/CVPR.2017.243]
[9]  
Huang LX, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, P1519, DOI 10.1109/ICInfA.2015.7279526
[10]  
Ioffe S., 2015, P 32 INT C MACH LEAR, P448, DOI DOI 10.48550/ARXIV.1502.03167