Cluster characters II: a multiplication formula

被引:15
作者
Palu, Yann [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
TRIANGULATED CATEGORIES; CONSTRUCTIBLE FUNCTIONS; ALGEBRAS; QUIVERS; POTENTIALS;
D O I
10.1112/plms/pdr027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a Hom-finite triangulated 2-Calabi-Yau category with a cluster-tilting object. Under some constructibility assumptions on C which are satisfied, for instance, by cluster categories, by generalized cluster categories and by stable categories of modules over a preprojective algebra of Dynkin type, we prove a multiplication formula for the cluster character associated with any cluster-tilting object. This formula generalizes those obtained by Caldero-Keller for representation finite path algebras and by Xiao-Xu for finite-dimensional path algebras. We prove an analogous formula for the cluster character defined by Fu-Keller in the set-up of Frobenius categories. It is similar to a formula obtained by Geiss-Leclerc-Schroer in the context of preprojective algebras.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 35 条
[1]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[2]  
[Anonymous], ARXIVMATH0612139V3MA
[3]   Cluster structures for 2-Calabi-Yau categories and unipotent groups [J].
Buan, A. B. ;
Iyama, O. ;
Reiten, I. ;
Scott, J. .
COMPOSITIO MATHEMATICA, 2009, 145 (04) :1035-1079
[4]  
Buan AB, 2006, CONTEMP MATH, V406, P1
[5]   From triangulated categories to cluster algebras [J].
Caldero, Philippe ;
Keller, Bernhard .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :169-211
[6]   From triangulated categories to cluster algebras II [J].
Caldero, Philippe ;
Keller, Bernhard .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (06) :983-1009
[7]   Cluster algebras as Hall algebras of quiver representations [J].
Caldero, Philippe ;
Chapoton, Frederic .
COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) :595-616
[8]   On the Combinatorics of Rigid Objects in 2-Calabi-Yau Categories [J].
Dehy, Raika ;
Keller, Bernhard .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[9]   QUIVERS WITH POTENTIALS AND THEIR REPRESENTATIONS II: APPLICATIONS TO CLUSTER ALGEBRAS [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :749-790
[10]   Quivers with potentials and their representations I: Mutations [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01) :59-119