A large areal capacitance structural supercapacitor with a 3D rGO@MnO2foam electrode and polyacrylic acid-Portland cement-KOH electrolyte

被引:76
作者
Fang, Cuiqin [1 ]
Zhang, Dong [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; MNO2; NANOSTRUCTURES; ENERGY BUILDINGS; GRAPHENE; DESIGN; FIBER; COMPOSITES; SENSORS; FABRICATION; EFFICIENT;
D O I
10.1039/d0ta03109g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, structural supercapacitors have attracted considerable attention due to their concurrent capability to store electrochemical energy and support mechanical loads. However, the greatest challenge in realizing an integrated electro-mechanical system is the development of highly compatible electrodes and structural electrolytes with superior mechanical and electrochemical performance. Here, a structural supercapacitor assembled with a 3D rGO@MnO(2)nickel foam electrode and polyacrylic acid-Portland cement-KOH electrolyte is reported to solve the challenge for the first time. The resulting rGO@MnO(2)electrode exhibits a high areal capacitance of 1.84 F cm(-2)at 0.5 mA cm(-2), with the areal capacitance remaining at 1.13 F cm(-2)even at a current density of 40 mA cm(-2). The structural electrolyte with 6 wt% polyacrylic acid-Portland cement-KOH shows the best combination of an ionic conductivity of 2.13 mS cm(-1)and a compressive strength of 28.5 MPa. The resulting asymmetric structural supercapacitor with an areal capacitance of 51.5 mF cm(-2)at 0.1 mA cm(-2)is superior to those reported in latest studies based on carbon materials and resin, which suggests its potential application in structural energy storage for civil engineering.
引用
收藏
页码:12586 / 12593
页数:8
相关论文
共 68 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Load-bearing supercapacitor based on bicontinuous PEO-b-P(S-co-DVB) structural electrolyte integrated with conductive nanowire-carbon fiber electrodes [J].
Bae, Seok-Hu ;
Jeon, Choongseop ;
Oh, Saewoong ;
Kim, Chun-Gon ;
Seo, Myungeun ;
Oh, Il-Kwon .
CARBON, 2018, 139 :10-20
[3]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[4]   Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes [J].
Cakici, Murat ;
Reddy, Kakarla Raghava ;
Alonso-Marroquin, Fernando .
CHEMICAL ENGINEERING JOURNAL, 2017, 309 :151-158
[5]   Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Xu, Qiang ;
Wu, Xin-Tao ;
Zhu, Qi-Long .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[6]   The influences of two admixtures on white and colored Portland cement [J].
Chang, J ;
Cheng, X ;
Lu, LC ;
Liu, FT ;
Zhu, JP .
CEMENT AND CONCRETE RESEARCH, 2001, 31 (09) :1367-1372
[7]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[8]   Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors [J].
Choi, Changsoon ;
Lee, Jae Myeong ;
Kim, Shi Hyeong ;
Kim, Seon Jeong ;
Di, Jiangtao ;
Baughman, Ray H. .
NANO LETTERS, 2016, 16 (12) :7677-7684
[9]   Development, design and applications of structural capacitors [J].
Chung, D. D. L. .
APPLIED ENERGY, 2018, 231 :89-101
[10]   Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash [J].
De Weerdt, K. ;
Ben Haha, M. ;
Le Saout, G. ;
Kjellsen, K. O. ;
Justnes, H. ;
Lothenbach, B. .
CEMENT AND CONCRETE RESEARCH, 2011, 41 (03) :279-291