Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration

被引:182
作者
Chen, Chunmao [1 ]
Tang, Jincheng [1 ]
Gu, Yong [1 ]
Liu, Lili [1 ]
Liu, Xingzhi [1 ]
Deng, Lianfu [2 ]
Martins, Claudia [3 ,4 ,5 ,6 ]
Sarmento, Bruno [3 ,4 ,5 ,6 ]
Cui, Wenguo [2 ]
Chen, Liang [1 ]
机构
[1] Soochow Univ, Affiliated Hosp 1, Dept Orthopaed Surg, Orthoped Inst, Suzhou 215006, Jiangsu, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Inst Traumatol & Orthopaed, Shanghai Key Lab Prevent & Treatment Bone & Joint, Ruijin Hosp,Sch Med, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
[3] Univ Porto, INEB Inst Engn Biomed, Rua Alfredo Allen 208, P-4200393 Porto, Portugal
[4] Univ Porto, I3S Inst Invest & Inovac Saude, Rua Alfredo Allen 208, P-4200393 Porto, Portugal
[5] CESPU Inst Invest & Formac Avancada Ciencias & Te, Rua Cent Gandra 1317, P-4585116 Gandra, Portugal
[6] Inst Univ Ciencias Saude, Rua Cent Gandra 1317, P-4585116 Gandra, Portugal
基金
中国国家自然科学基金;
关键词
bioinspired scaffold; electrospun; hydrogel; microfibers; spinal cord injury; ENDOGENOUS NEUROGENESIS; STEM-CELLS; BIOMIMETIC MATERIALS; GELATIN; DIFFERENTIATION; DIRECTS; VASCULARIZATION; PROLIFERATION; SCAFFOLDS; MIGRATION;
D O I
10.1002/adfm.201806899
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fully simulating the components and microstructures of soft tissue is a challenge for its functional regeneration. A new aligned hydrogel microfiber scaffold for spinal cord regeneration is constructed with photocrosslinked gelatin methacryloyl (GelMA) and electrospinning technology. The directional porous hydrogel fibrous scaffold consistent with nerve axons is vital to guide cell migration and axon extension. The GelMA hydrogel electrospun fibers soak up water more than six times their weight, with a lower Young's modulus, providing a favorable survival and metabolic environment for neuronal cells. GelMA fibers further demonstrate higher antinestin, anti-Tuj-1, antisynaptophysin, and anti-CD31 gene expression in neural stem cells, neuronal cells, synapses, and vascular endothelial cells, respectively. In contrast, anti-GFAP and anti-CS56 labeled astrocytes and glial scars of GelMA fibers are shown to be present in a lesser extent compared with gelatin fibers. The soft bionic scaffold constructed with electrospun GelMA hydrogel fibers not only facilitates the migration of neural stem cells and induces their differentiation into neuronal cells, but also inhibits the glial scar formation and promotes angiogenesis. Moreover, the scaffold with a high degree of elasticity can resist deformation without the protection of a bony spinal canal. The bioinspired aligned hydrogel microfiber proves to be efficient and versatile in triggering functional regeneration of the spinal cord.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Defining and designing polymers and hydrogels for neural tissue engineering [J].
Aurand, Emily R. ;
Lampe, Kyle J. ;
Bjugstad, Kimberly B. .
NEUROSCIENCE RESEARCH, 2012, 72 (03) :199-213
[2]   Bioorthogonal Click Chemistry: An Indispensable Tool to Create Multifaceted Cell Culture Scaffolds [J].
Azagarsamy, Malar A. ;
Anseth, Kristi S. .
ACS MACRO LETTERS, 2013, 2 (01) :5-9
[3]   Origin of New Glial Cells in Intact and Injured Adult Spinal Cord [J].
Barnabe-Heider, Fanie ;
Goritz, Christian ;
Sabelstrom, Hanna ;
Takebayashi, Hirohide ;
Pfrieger, Frank W. ;
Meletis, Konstantinos ;
Frisen, Jonas .
CELL STEM CELL, 2010, 7 (04) :470-482
[4]   Repair, protection and regeneration of spinal cord injury [J].
Cao, Xiao-jian ;
Feng, Shi-qing ;
Fu, Chang-feng ;
Gao, Kai ;
Guo, Jia-song ;
Guo, Xiao-dong ;
He, Xi-jing ;
Huang, Zi-wei ;
Li, Zhong-hai ;
Liu, Ling ;
Liu, Rong-han ;
Lu, He-Zuo ;
Mei, Xi-fan ;
Ning, Bin ;
Ning, Guang-zhi ;
Qian, Chang-hui ;
Qin, Jie ;
Qu, Yan-zhen ;
Saijilafu ;
Shi, Bo ;
Sui, Tao ;
Sun, Tian-sheng ;
Wang, Jian ;
Wen, Jin-kun ;
Xiao, Jian ;
Xu, Bin ;
Xu, Hai-dong ;
Yu, Pan-pan ;
Zhang, Zhi-cheng ;
Zhou, Yong ;
Zhou, Yu-long .
NEURAL REGENERATION RESEARCH, 2015, 10 (12) :1953-1975
[5]   Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration [J].
Cheng, Ruoyu ;
Yan, Yufei ;
Liu, Han ;
Chen, Hao ;
Pan, Guoqing ;
Deng, Lianfu ;
Cui, Wenguo .
APPLIED MATERIALS TODAY, 2018, 12 :294-308
[6]   Epidemiology of traumatic spinal cord injury: trends and future implications [J].
DeVivo, M. J. .
SPINAL CORD, 2012, 50 (05) :365-372
[7]   Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord [J].
Dray, Cyril ;
Rougon, Genevieve ;
Debarbieux, Franck .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (23) :9459-9464
[8]   Endogenous neurogenesis in adult mammals after spinal cord injury [J].
Duan, Hongmei ;
Song, Wei ;
Zhao, Wen ;
Gao, Yudan ;
Yang, Zhaoyang ;
Li, Xiaoguang .
SCIENCE CHINA-LIFE SCIENCES, 2016, 59 (12) :1313-1318
[9]   Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering [J].
Eke, Gozde ;
Mangir, Naside ;
Hasirci, Nesrin ;
MacNeil, Sheila ;
Hasirci, Vasif .
BIOMATERIALS, 2017, 129 :188-198
[10]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689