Analysis of Divide-and-Conquer strategies for the 0-1 minimization knapsack problem

被引:5
作者
Morales, Fernando A. [1 ]
Martinez, Jairo A. [2 ]
机构
[1] Univ Nacl Colombia, Escuela Matemat, Sede Medellin, Carrera 65 59A-110,Bloque 43,106, Medellin, Colombia
[2] Univ EAFIT, Dept Ciencias Matemat, Carrera 49 7 Sur 50,Bloque 38,501, Medellin, Colombia
关键词
Divide-and-Conquer; Knapsack problem; Monte Carlo simulations; Method's efficiency; COMBINATORIAL OPTIMIZATION; METAHEURISTICS;
D O I
10.1007/s10878-020-00584-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce and asses several Divide-and-Conquer heuristic strategies, aimed at solving large instances of the 0-1 Minimization Knapsack Problem. The method subdivides a large problem in two smaller ones (or recursive iterations of the same procedure), in order to lower down the global computational complexity of the original problem, at the expense of a moderate loss of quality in the solution. Theoretical mathematical results are presented to assure a successful algorithmic application of the method and to suggest the potential strategies for its implementation. In contrast, due to the lack of theoretical results, the solution's quality deterioration is measured empirically by means of Monte Carlo simulations for several types and values of the chosen strategies. Finally, introducing parameters of efficiency we suggest the best strategies depending on the data input.
引用
收藏
页码:234 / 278
页数:45
相关论文
共 18 条
  • [1] Baños R, 2003, LECT NOTES COMPUT SC, V2611, P143
  • [2] Metaheuristics in combinatorial optimization: Overview and conceptual comparison
    Blum, C
    Roli, A
    [J]. ACM COMPUTING SURVEYS, 2003, 35 (03) : 268 - 308
  • [3] Hybrid metaheuristics in combinatorial optimization: A survey
    Blum, Christian
    Puchinger, Jakob
    Raidl, Guenther R.
    Roli, Andrea
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (06) : 4135 - 4151
  • [4] Tabu search and finite convergence
    Glover, F
    Hanafi, S
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 119 (1-2) : 3 - 36
  • [5] Gross Jonathan L, 2006, GRAPH THEORY ITS APP
  • [6] Gutjahr WJ, 2003, LECT NOTES COMPUT SC, V2827, P10
  • [7] Gutjahr WJ, 2010, CONVERGENCE ANAL MET, P159, DOI DOI 10.1007/978-1-4419-1306-7_6
  • [8] On the convergence of Tabu Search
    Hanafi, S
    [J]. JOURNAL OF HEURISTICS, 2001, 7 (01) : 47 - 58
  • [9] A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems
    Juan, Angel A.
    Faulin, Javier
    Grasman, Scott E.
    Rabe, Markus
    Figueira, Goncalo
    [J]. OPERATIONS RESEARCH PERSPECTIVES, 2015, 2 : 62 - 72
  • [10] Kellerer H, 2004, KNAPSACK PROBLEMS DI