Timing the introduction of new products to the market is an important strategic decision in the automotive industry. For several reasons, it is also a complex decision problem. First, the use of platforms creates many interactions between different vehicles via shared modules (e.g. engines). Second, new and existing products rely on various shared resources (e.g. development resources or production capacities). Furthermore, different conflicting objectives must be considered. In this paper, we develop a mathematical linear programming model describing the decision problem based on the resource-constrained project scheduling problem. It simultaneously decides on the start of production date for vehicle models, variants, and engines as well as on the assignment of engines to the given variants. Integrating a multicriteria approach, the model helps to analyze trade-offs between important managerial objectives related to resource utilization and fleet emission metrics. Using realistic data from a major European automotive company, we demonstrate that our model enables the efficient evaluation of various courses of action. Such capabilities are especially relevant in times of rapid technological change, such as the current transition towards electrified vehicle portfolios. (C) 2021 The Author(s). Published by Elsevier Ltd.