On the convergence properties of the Levenberg-Marquardt method

被引:25
作者
Zhang, JL [1 ]
机构
[1] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear equation system; Levenberg-Marquardt method; error bound; superlinear convergence;
D O I
10.1080/0233193031000163993
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, a new method is presented to update the parameter in the Levenberg-Marquardt Method (LMM) for solving nonlinear equation system, i.e., mu(k) = Theta(dist(x(k), X*)(delta)) (0 < delta less than or equal to 2) (namely, there exist positive constants c(2) > 0, c(3) > 0 such that c(2)dist(x(k), X*)(delta) less than or equal to mu(k) less than or equal to c(3)dist(x(k), X*)(delta)). The existing methods in [H. Dan, N. Yamashita and M. Fukushima (2001). Convergence Properties of the Inexact Levenberg-Marquardt Method Under Local Error Bound Conditions. Technical Report 2001-003. Department of Applied Mathematics and Physics, Kyoto University; N. Yamashita and M. Fukushima (2001). On the rate of convergence of the Levenberg-Marquardt method. Computing, 15, 239-249; J. Fan and Y. Yuan (2000). On the Convergence of a New Levenberg-Marquardt Method. Technical Report, State Key Laboratory of Scientific/Engineering Computing. Institute of Computational Mathematics and Scientific/ Engineering Computing, CAS] are special cases of our method. We prove that the sequence generated by the method converges to the solution of the original equation system superlinearly and the exact order of convergence rate is min{1 + delta, 2} if \\F(x)\\ provides a local error bound for the system of nonlinear equations. It improves the existing results in [H. Dan, N. Yamashita and M. Fukushima (200 1). Convergence Properties of the Inexact Levenberg-Marquardt Method Under Local Error Bound Conditions. Technical Report 2001-003. Department of Applied Mathematics and Physics, Kyoto University; N. Yamashita and M. Fukushima (2001). On the rate of convergence of the Levenberg-Marquardt method. Computing, 15, 239-249; J. Fan and Y. Yuan (2000). On the Convergence of a New Levenberg-Marquardt Method, Technical Report. State Key Laboratory of Scientific/Engineering Computing. Institute of Computational Mathematics and Scientific/Engineering Computing, CAS]. Furthermore, we generalize these results to nonlinear equation system with nonnegative constraints.
引用
收藏
页码:739 / 756
页数:18
相关论文
共 8 条
[1]  
DAN H, 2001, 2001003 KYOT U DEP A
[2]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512
[3]  
FAN J, 2000, CONVERGENCE NEW LEVE
[4]  
Floudas C.A, 2000, NONCON OPTIM ITS APP, DOI 10.1007/978-1-4757-4949-6
[5]  
Levenberg K., 1944, Quarterly of Applied Mathematics, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666]
[6]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[7]  
Stewart G., 1990, MATRIX PERTURBATION
[8]   Ninth Symposium of the Japanese Arsenic Scientists' Society (JASS-9), 20-21 November 1999, Hiroshima, Japan - Preface [J].
Yamaoka, Y .
APPLIED ORGANOMETALLIC CHEMISTRY, 2001, 15 (04) :239-239