Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration

被引:124
作者
Dai, Xiaoyun [1 ]
Zhu, Feng [1 ]
Qian, Zhenghua [1 ]
Yang, Jiashi [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[2] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
Piezoelectric semiconductor nanowire; Bending vibration; Energy harvesting; ELECTROMECHANICAL FIELDS; ZNO NANOWIRE; NANODEVICES; NANOGENERATORS; DEVICES; NANOBELTS; SUBSTRATE; CRYSTALS; ARRAYS; CRACKS;
D O I
10.1016/j.nanoen.2017.11.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study a ZnO piezoelectric semiconductor nanowire in bending vibration with shear deformation for energy harvesting application. The wire is a cantilever fixed at one end and is driven by a time-harmonic transverse shear force at the other end. A theoretical analysis is performed using one-dimensional equations based on the phenomenological theory of piezoelectric semiconductors consisting of the momentum equation, the charge equation of electrostatics, and the conservation of charge for holes and electrons. An analytical solution is obtained. The distributions of the electric potential and carrier concentration near resonances are calculated. The fields at the first resonance are qualitatively similar to the static fields. At the second and higher resonances the fields reverse their directions when crossing the nodal points of the vibration modes. The results obtained are fundamental to the development and optimization of energy harvesters and other devices based on the bending vibration of ZnO nanowires.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 41 条
[1]   Piezo-Semiconductive Quasi-1D Nanodevices with or without Anti-Symmetry [J].
Araneo, Rodolfo ;
Lovat, Giampiero ;
Burghignoli, Paolo ;
Falconi, Christian .
ADVANCED MATERIALS, 2012, 24 (34) :4719-4724
[2]   Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts [J].
Asthana, A. ;
Ardakani, H. A. ;
Yap, Y. K. ;
Yassar, R. S. .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (20) :3995-4004
[3]  
Auld B. A., 1973, Acoustic Waves and Fields in Solids, V1
[4]   High-frequency acoustic charge transport in GaAs nanowires [J].
Buyukkose, S. ;
Hernandez-Minguez, A. ;
Vratzov, B. ;
Somaschini, C. ;
Geelhaar, L. ;
Riechert, H. ;
van der Wiel, W. G. ;
Santos, P. V. .
NANOTECHNOLOGY, 2014, 25 (13)
[5]   Photoelastic effect in ZnO nanorods [J].
Chen, T. T. ;
Cheng, C. L. ;
Fu, S-P ;
Chen, Y. F. .
NANOTECHNOLOGY, 2007, 18 (22)
[6]   Bending effects of ZnO nanorod metal-semiconductor-metal photodetectors on flexible polyimide substrate [J].
Chen, Tse-Pu ;
Young, Sheng-Joue ;
Chang, Shoou-Jinn ;
Hsiao, Chih-Hung ;
Hsu, Yu-Jung .
NANOSCALE RESEARCH LETTERS, 2012, 7
[7]   Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods [J].
Choi, Min-Yeol ;
Choi, Dukhyun ;
Jin, Mi-Jin ;
Kim, Insoo ;
Kim, Song-Hyeob ;
Choi, Joe-Young ;
Lee, Song Yoon ;
Kim, Jong Min ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2009, 21 (21) :2185-+
[8]   Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method [J].
Fan, CuiYing ;
Yan, Yang ;
Xu, GuangTao ;
Zhao, MingHao .
ENGINEERING FRACTURE MECHANICS, 2016, 165 :183-196
[9]   Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I-Linearized analysis [J].
Fan, Shuaiqi ;
Liang, Yuxing ;
Xie, Jiemin ;
Hu, Yuantai .
NANO ENERGY, 2017, 40 :82-87
[10]   Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices [J].
Gao, Pu Xian ;
Song, Jinhui ;
Liu, Jin ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2007, 19 (01) :67-+