Trace operators on fractals, entropy and approximation numbers

被引:3
作者
Schneider, Cornelia [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
关键词
Besov spaces; Triebel-Lizorkin spaces; d-sets; traces; entropy numbers; approximation numbers; BESOV; SPACES;
D O I
10.1515/GMJ.2011.0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First we compute the trace space of Besov spaces B-p,q(s) - characterized via atomic decompositions - on fractals Gamma for parameters 0 < p < infinity, 0 < q <= min(1, p) and s = (n - d)/ p. New Besov spaces B-p,(s)(q) (Gamma) on fractals are defined via traces for 0 < p, q <= infinity, s >= (n-d)/p and some embedding assertions are established. We conclude by studying the compactness of the trace operator Trr by giving sharp estimates for entropy and approximation numbers of compact embeddings between Besov spaces. Our results on Besov spaces remain valid considering the classical spaces B-p,q(s) defined via differences. The trace results are used to study traces in Triebel Lizorkin spaces S-p,q(s) as well.
引用
收藏
页码:549 / 575
页数:27
相关论文
共 18 条
  • [1] [Anonymous], 1997, FRACTALS AND SPECTRA
  • [2] [Anonymous], 1996, CAMBRIDGE TRACTS MAT
  • [3] [Anonymous], 1987, OXFORD MATH MONOGRAP
  • [4] CARL B, 1990, CAMBRIDGE TRACTS MAT, V98
  • [5] Conway J B., 1990, COURSE FUNCTIONAL AN
  • [6] Besov spaces with positive smoothness on Rn, embeddings and growth envelopes
    Haroske, Dorothee D.
    Schneider, Cornelia
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 723 - 747
  • [7] Hedberg LI, 2007, MEM AM MATH SOC, V188, P1
  • [8] Konig H., 1986, Operator Theory: Advances and Applications, V16
  • [9] Moura S. D., 2001, Dissertationes Math. (Rozprawy Mat.), V398
  • [10] Pietsch A., 1987, Mathematik und ihre Anwendungen in Physik und Technik, V43