The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera)

被引:37
作者
Luo, Shiqi [1 ]
Tang, Min [1 ]
Frandsen, Paul B. [2 ,3 ]
Stewart, Russell J. [4 ]
Zhou, Xin [1 ]
机构
[1] China Agr Univ, Coll Plant Protect, Beijing Adv Innovat Ctr Food Nutr & Human Hlth, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China
[2] Brigham Young Univ, Dept Plant & Wildlife Sci, 701 E Univ Pkwy Dr, Provo, UT 84602 USA
[3] Smithsonian Inst, Data Sci Lab, 600 Maryland Ave SW, Washington, DC 20002 USA
[4] Univ Utah, Dept Biomed Engn, 20 South 2030 East, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
caddisworm; caddisfly; aquatic insect; freshwater adaptation; silk; H-fibroin; PacBio; ODORANT-BINDING-PROTEINS; PHYLOGENETIC ANALYSIS; GENE FAMILY; ANNOTATION; SILK; ALIGNMENT; SEQUENCE; TOOL; RNA; PROGRAM;
D O I
10.1093/gigascience/giy143
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Caddisflies (Insecta: Trichoptera) are a highly adapted freshwater group of insects split from a common ancestor with Lepidoptera. They are the most diverse (> 16,000 species) of the strictly aquatic insect orders and are widely employed as bio-indicators in water quality assessment and monitoring. Among the numerous adaptations to aquatic habitats, caddisfly larvae use silk and materials from the environment (e.g., stones, sticks, leaf matter) to build composite structures such as fixed retreats and portable cases. Understanding how caddisflies have adapted to aquatic habitats will help explain the evolution and subsequent diversification of the group. Findings: We sequenced a retreat-builder caddisfly Stenopsyche tienmushanensis Hwang and assembled a high-quality genome from both Illumina and Pacific Biosciences (PacBio) sequencing. In total, 601.2 M Illumina reads (90.2 Gb) and 16.9 M PacBio subreads (89.0 Gb) were generated. The 451.5 Mb assembled genome has a contig N50 of 1.29 M, has a longest contig of 4.76 Mb, and covers 97.65% of the 1,658 insect single-copy genes as assessed by Benchmarking Universal Single-Copy Orthologs. The genome comprises 36.76% repetitive elements. A total of 14,672 predicted protein-coding genes were identified. The genome revealed gene expansions in specific groups of the cytochrome P450 family and olfactory binding proteins, suggesting potential genomic features associated with pollutant tolerance and mate finding. In addition, the complete gene complex of the highly repetitive H-fibroin, the major protein component of caddisfly larval silk, was assembled. Conclusions: We report the draft genome of Stenopsyche tienmushanensis, the highest-quality caddisfly genome so far. The genome information will be an important resource for the study of caddisflies and may shed light on the evolution of aquatic insects.
引用
收藏
页数:12
相关论文
共 82 条
[1]   β-Sheet Nanocrystalline Domains Formed from Phosphorylated Serine-Rich Motifs in Caddisfly Larval Silk: A Solid State NMR and XRD Study [J].
Addison, J. Bennett ;
Ashton, Nicholas N. ;
Weber, Warner S. ;
Stewart, Russell J. ;
Holland, Gregory P. ;
Yarger, Jeffery L. .
BIOMACROMOLECULES, 2013, 14 (04) :1140-1148
[2]  
[Anonymous], CURR PROTOC BIOINFOR
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis [J].
Ashton, Nicholas N. ;
Pan, Huaizhong ;
Stewart, Russell J. .
OPEN BIOLOGY, 2016, 6 (06)
[5]   Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers [J].
Ashton, Nicholas N. ;
Stewart, Russell J. .
SOFT MATTER, 2015, 11 (09) :1667-1676
[6]   Self-Tensioning Aquatic Caddisfly Silk: Ca2+-Dependent Structure, Strength, and Load Cycle Hysteresis [J].
Ashton, Nicholas N. ;
Roe, Daniel R. ;
Weiss, Robert B. ;
Cheatham, Thomas E., III ;
Stewart, Russell J. .
BIOMACROMOLECULES, 2013, 14 (10) :3668-3681
[7]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[8]   Tandem repeats finder: a program to analyze DNA sequences [J].
Benson, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :573-580
[9]   Using GeneWise in the Drosophila annotation experiment [J].
Birney, E ;
Durbin, R .
GENOME RESEARCH, 2000, 10 (04) :547-548
[10]   Rfam 11.0: 10 years of RNA families [J].
Burge, Sarah W. ;
Daub, Jennifer ;
Eberhardt, Ruth ;
Tate, John ;
Barquist, Lars ;
Nawrocki, Eric P. ;
Eddy, Sean R. ;
Gardner, Paul P. ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D226-D232