Plasmonics Yields Efficient Electron Transport via Assembly of Shell-Insulated Au Nanoparticles

被引:28
作者
Li, Chuanping [1 ,2 ]
Cahen, David [3 ]
Wang, Ping [1 ]
Li, Haijuan [1 ]
Zhang, Jie [1 ]
Jin, Yongdong [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Electroanalyt Chem, Changchun Inst Appl Chem, 5625 Renmin St, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
关键词
MOLECULAR ELECTRONICS; METAL NANOPARTICLES; ORGANIC-MOLECULES; BUILDING-BLOCKS; NANOSCALE; JUNCTIONS; DEVICES; MONOLAYER; MEMBRANES; FILMS;
D O I
10.1016/j.isci.2018.09.022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Junctions built from metallic nanoparticles (NPs) can circumvent the diffraction limit and combine molecular/nanoelectronics with plasmonics. However, experimental advances in plasmon-assisted electron transport at the nanoscale have been limited. We construct junctions of a robust, molecule-free, suspended film, built solely from AuNPs, capped by SiO2 shells (Au@SiO2), which give insulating tunneling gaps up to 3.6 nm between the NPs. Current measured across monolayers of such AuNPs shows ultra-long-range, plasmon-enabled electron transport (P-transport), beyond the range of normal electron tunneling across insulators. This finding challenges the present understanding of electron transport in such systems and opens possibilities for future combinations of plasmonics and nanoelectronics.
引用
收藏
页码:213 / +
页数:23
相关论文
共 38 条
[1]   Wavelike charge density fluctuations and van der Waals interactions at the nanoscale [J].
Ambrosetti, Alberto ;
Ferri, Nicola ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
SCIENCE, 2016, 351 (6278) :1171-1176
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Nanoplasmonics for chemistry [J].
Baffou, Guillaume ;
Quidant, Romain .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3898-3907
[5]   Exploiting Plasmon-Induced Hot Electrons in Molecular Electronic Devices [J].
Conklin, David ;
Nanayakkara, Sanjini ;
Park, Tae-Hong ;
Lagadec, Marie F. ;
Stecher, Joshua T. ;
Chen, Xi ;
Therien, Michael J. ;
Bonnell, Dawn A. .
ACS NANO, 2013, 7 (05) :4479-4486
[6]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[7]   Plasmonics in Nanostructures [J].
Fang, Zheyu ;
Zhu, Xing .
ADVANCED MATERIALS, 2013, 25 (28) :3840-3856
[8]   Whence molecular electronics? [J].
Flood, AH ;
Stoddart, JF ;
Steuerman, DW ;
Heath, JR .
SCIENCE, 2004, 306 (5704) :2055-2056
[9]   Plasmonic photo-current in freestanding monolayered gold nanoparticle membranes [J].
Gauvin, M. ;
Alnasser, T. ;
Terver, E. ;
Abid, I. ;
Mlayah, A. ;
Xie, S. ;
Brugger, J. ;
Viallet, B. ;
Ressier, L. ;
Grisolia, J. .
NANOSCALE, 2016, 8 (36) :16162-16167