SCHEDULING MASSIVELY PARALLEL MULTIGRID FOR MULTILEVEL MONTE CARLO METHODS

被引:24
作者
Drzisga, D. [1 ]
Gmeiner, B. [2 ]
Ruede, U. [2 ]
Scheichl, R. [3 ]
Wohlmuth, B. [1 ]
机构
[1] Tech Univ Munich, Inst Numer Math, D-85748 Garching, Germany
[2] Univ Erlangen Nurnberg, Lehstuhl Syst Simulat, D-91058 Erlangen, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
multigrid; multilevel Monte Carlo; scheduling; parallel computing; stochastic partial differential equation; ELLIPTIC PDES; ALGORITHMS; PERFORMANCE;
D O I
10.1137/16M1083591
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The computational complexity of naive, sampling-based uncertainty quantification for 3D partial differential equations is extremely high. Multilevel approaches, such as multilevel Monte Carlo(MLMC), can reduce the complexity significantly when they are combined with a fast multigrid solver, but to exploit them fully in a parallel environment, sophisticated scheduling strategies are needed. We optimize the concurrent execution across the three layers of the MLMC method: parallelization across levels, across samples, and across the spatial grid. In a series of numerical tests, the influence on the overall performance of the "scalability window" of the multigrid solver (i.e., the range of processor numbers over which good parallel efficiency can be maintained) is illustrated. Different homogeneous and heterogeneous scheduling strategies are proposed and discussed. Finally, large 3D scaling experiments are carried out, including adaptivity.
引用
收藏
页码:S873 / S897
页数:25
相关论文
共 40 条
  • [1] Baker A, 2012, COMPREHENSIVE COURSE IN NUMBER THEORY, P215
  • [2] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [3] Hierarchical hybrid grids:: data structures and core algorithms for multigrid
    Bergen, BK
    Hülsemann, F
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (2-3) : 279 - 291
  • [4] Brucker P., 1977, Ann. Discrete Math., V1, P343, DOI [DOI 10.1016/S0167-5060(08)70743-X, 10.1016/S0167-5060(08)70743-X]
  • [5] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [6] A survey of parallelization techniques for multigrid solvers
    Chow, Edmond
    Falgout, Robert A.
    Hu, Jonathan J.
    Tuminaro, Raymond S.
    Yang, Ulrike Meier
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 179 - 201
  • [7] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [8] A continuation multilevel Monte Carlo algorithm
    Collier, Nathan
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    von Schwerin, Erik
    Tempone, Raul
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 399 - 432
  • [9] Dagan G., 1989, Flow and transport in porous formations.
  • [10] Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix
    Dietrich, CR
    Newsam, GN
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04) : 1088 - 1107