The role of SnO2 surface coating in the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 cathode materials

被引:36
作者
Li, Bing [1 ]
Wang, Jing [2 ]
Cao, Zulai [2 ]
Zhang, Peng [1 ]
Zhao, Jinbao [1 ,2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface modification; Tin oxide; Lithium-rich layered oxide; Metal dissolution; HIGH-VOLTAGE APPLICATIONS; HIGH-CAPACITY; FACILE SYNTHESIS; LITHIUM; MN; LICOO2; ELECTRODES; STABILITY; ALUMINUM; NI;
D O I
10.1016/j.jpowsour.2016.06.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The manganese metal ions and other transition metal ions in lithium manganite cathode materials will be dissolved into the electrolyte during cycling and storage at charged state, leading to severe capacity fading. Herein, the SnO2-coated Li1.2Mn0.54Co0.13Ni0.13O2 cathode material is prepared successfully by a simple organic liquid-phase method. The data of inductive coupled plasma-atomic emission spectroscopy and ex-XRD suggest that the coating layer can effectively suppress the dissolution of metal ions, which maintains the stability of main structure. The value of the charge transfer impedance is 35.49 Omega cm(2) for LLMO-Sn1 after 50 cycles, while the LLMO is 123.30 Omega cm(2). The LLMO-Sn1 has the highest discharge capacity of 214.0 mAh.g(-1) after 150 cycles in half cell and exhibits the capacity retention of 86.8% after 150 cycles in full-cell. The decomposition reaction peak of LLMO-Sn1 appears at 250.1 degrees C. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 40 条
[1]   Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J].
Amatucci, GG ;
Schmutz, CN ;
Blyr, A ;
Sigala, C ;
Gozdz, AS ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF POWER SOURCES, 1997, 69 (1-2) :11-25
[2]   Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].
Amine, K ;
Liu, J ;
Kang, S ;
Belharouak, I ;
Hyung, Y ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2004, 129 (01) :14-19
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries [J].
Chang, Wonyoung ;
Choi, Jung-Woo ;
Im, Jong-Choo ;
Lee, Joong Kee .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :320-326
[5]  
Chi M., 2011, MICROSC MICROANAL, V17, P1574
[6]   Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes [J].
Dogan, Fulya ;
Long, Brandon R. ;
Croy, Jason R. ;
Gallagher, Kevin G. ;
Iddir, Hakim ;
Russell, John T. ;
Balasubramanian, Mahalingam ;
Key, Baris .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (06) :2328-2335
[7]   Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material for Li-ion batteries [J].
Du, Ke ;
Yang, Fei ;
Hu, Guo-rong ;
Peng, Zhong-dong ;
Cao, Yan-bing ;
Ryu, Kwang Sun .
JOURNAL OF POWER SOURCES, 2013, 244 :29-34
[8]   A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries [J].
Edström, K ;
Herstedt, M ;
Abraham, DP .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :380-384
[9]   Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons [J].
Hu, JQ ;
Bando, Y ;
Liu, QL ;
Golberg, D .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (06) :493-496
[10]   SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries [J].
Hudaya, Chairul ;
Park, Ji Hun ;
Lee, Joong Kee ;
Choi, Wonchang .
SOLID STATE IONICS, 2014, 256 :89-92