AN ALGEBRAIC MODEL FOR RATIONAL NAIVE-COMMUTATIVE G-EQUIVARIANT RING SPECTRA FOR FINITE G

被引:5
作者
Barnes, David [1 ]
Greenlees, J. P. C. [2 ]
Kedziorek, Magdalena [3 ]
机构
[1] Queens Univ Belfast, Sch Math & Phys, Math Sci Res Ctr, Belfast BT7 3JH, Antrim, North Ireland
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
rational equivariant spectrum; commutative equivariant ring spectrum; left Bousfield localisation; model category; algebraic model;
D O I
10.4310/HHA.2019.v21.n1.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Equipping a non-equivariant topological E-infinity-operad with the trivial G-action gives an operad in G-spaces. The algebra structure encoded by this operad in G-spectra is characterised homotopically by having no non-trivial multiplicative norms. Algebras over this operad are called naive-commutative ring G-spectra. In this paper we let G be a finite group and we show that commutative algebras in the algebraic model for rational G-spectra model the rational naive-commutative ring G-spectra. In other words, a rational naive-commutative ring G-spectrum is given in the algebraic model by specifying a Q[W-G(H)]-differential graded algebra for each conjugacy class of subgroups H of G. Here W-G(H) = N-G(H)/H is the Weyl group of H in G.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 25 条
[1]   Splitting monoidal stable model categories [J].
Barnes, D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) :846-856
[2]  
Barnes D., ALGEBRAIC MODE UNPUB
[3]  
Barnes D., 2009, HOMOL HOMOTOPY APPL, V11, P141
[4]   Rational SO(2)- equivariant spectra [J].
Barnes, David ;
Greenlees, J. P. C. ;
Kedziorek, Magdalena ;
Shipley, Brooke .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02) :983-1020
[5]   Operadic multiplications in equivariant spectra, norms, and transfers [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ADVANCES IN MATHEMATICS, 2015, 285 :658-708
[6]  
Bohme B., 2018, ARXIV180201938
[7]  
BORCEUX F., 1994, HDB CATEGORICAL ALGE, V51
[8]   FIXED SET SYSTEMS OF EQUIVARIANT INFINITE LOOP-SPACES [J].
COSTENOBLE, SR ;
WANER, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (02) :485-505
[9]  
Elmendorf A. D., 1997, MATH SURVEYS MONOGR, V47
[10]  
Greenlees J. P. C., 1995, Mem. Amer. Math. Soc., V113, DOI [10.1090/memo/0543, DOI 10.1090/MEMO/0543]