Graph-optimisation-based self-calibration method for IMU/odometer using preintegration theory

被引:5
作者
Bai, Shiyu [1 ]
Lai, Jizhou [1 ]
Lyu, Pin [1 ]
Cen, Yiting [1 ]
Wang, Bingqing [1 ]
Sun, Xin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
graph-optimisation; self-calibration; IMU; odometer; preintegration; FUSION; ROBUST; COMPENSATION; INTEGRATION; SLAM;
D O I
10.1017/S0373463321000722
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.
引用
收藏
页码:594 / 613
页数:20
相关论文
共 30 条
[1]   GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration [J].
Chang, Le ;
Niu, Xiaoji ;
Liu, Tianyi .
SENSORS, 2020, 20 (17) :1-18
[2]  
Chiu HP, 2014, IEEE INT CONF ROBOT, P663, DOI 10.1109/ICRA.2014.6906925
[3]  
Dang ZQ, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), P1613, DOI 10.1109/ROBIO.2018.8665337
[4]  
Dellaert Frank., 2017, FDN TRENDSR ROBOTICS, V6, P1, DOI DOI 10.1561/2300000043
[5]   On-Manifold Preintegration for Real-Time Visual-Inertial Odometry [J].
Forster, Christian ;
Carlone, Luca ;
Dellaert, Frank ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) :1-21
[6]   Study on Integration of FOG Single-Axis Rotational INS and Odometer for Land Vehicle [J].
Gao, Jiaxin ;
Li, Kui ;
Chen, Yuanpei .
IEEE SENSORS JOURNAL, 2018, 18 (02) :752-763
[7]   Railway irregularity measuring using Rauch-Tung-Striebel smoothed multi-sensors fusion system: quad-GNSS PPP, IMU, odometer, and track gauge [J].
Gao, Zhouzheng ;
Ge, Maorong ;
Li, You ;
Shen, Wenbin ;
Zhang, Hongping ;
Schuh, Harald .
GPS SOLUTIONS, 2018, 22 (02)
[8]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[9]   Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter [J].
Georgy, Jacques ;
Karamat, Tashfeen ;
Iqbal, Umar ;
Noureldin, Aboelmagd .
GPS SOLUTIONS, 2011, 15 (03) :239-252
[10]  
He YJ, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), P1624, DOI 10.1109/ROBIO.2017.8324650